{"title":"He和C2+的受激辐射结合","authors":"Pavel Soldán","doi":"10.1016/j.jqsrt.2025.109699","DOIUrl":null,"url":null,"abstract":"<div><div>Stimulated radiative association of He and C<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> is investigated for temperatures <span><math><mrow><mi>T</mi><mo>=</mo><mn>10</mn><mo>…</mo><mn>10</mn><mspace></mspace><mn>000</mn></mrow></math></span> K and a wide range of background-radiation temperatures, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>…</mo><mn>50</mn><mspace></mspace><mn>000</mn></mrow></math></span> K. New HeC<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> potential energy curve is calculated by extrapolating the curves obtained by high-level <em>ab initio</em> calculations. Then the scattering cross section for the HeC<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> formation by stimulated radiative association of He and C<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> is calculated as a function of collision energy using a fully quantum mechanical approach. From these, the temperature-dependent rate coefficient of this process is determined for selected background temperatures. Barrier-less potential energy curve of HeC<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> supports 24 vibrational levels and 674 bound rovibrational states. 88 rovibrational resonances embedded in the potential continuum participate in the radiative association process. The rate coefficient for the spontaneous process monotonically decreases from <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>20</mn></mrow></msup></mrow></math></span> cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> s<sup>−1</sup> to <span><math><mrow><mn>2</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>22</mn></mrow></msup></mrow></math></span> cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> s<sup>−1</sup>. The rate coefficients for stimulated processes increase with increasing background-radiation temperatures by up to two orders of magnitude for <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>=</mo><mn>50</mn><mspace></mspace><mn>000</mn></mrow></math></span> K.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"348 ","pages":"Article 109699"},"PeriodicalIF":1.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimulated radiative association of He and C2+\",\"authors\":\"Pavel Soldán\",\"doi\":\"10.1016/j.jqsrt.2025.109699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stimulated radiative association of He and C<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> is investigated for temperatures <span><math><mrow><mi>T</mi><mo>=</mo><mn>10</mn><mo>…</mo><mn>10</mn><mspace></mspace><mn>000</mn></mrow></math></span> K and a wide range of background-radiation temperatures, <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>…</mo><mn>50</mn><mspace></mspace><mn>000</mn></mrow></math></span> K. New HeC<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> potential energy curve is calculated by extrapolating the curves obtained by high-level <em>ab initio</em> calculations. Then the scattering cross section for the HeC<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> formation by stimulated radiative association of He and C<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> is calculated as a function of collision energy using a fully quantum mechanical approach. From these, the temperature-dependent rate coefficient of this process is determined for selected background temperatures. Barrier-less potential energy curve of HeC<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>+</mo></mrow></msup></math></span> supports 24 vibrational levels and 674 bound rovibrational states. 88 rovibrational resonances embedded in the potential continuum participate in the radiative association process. The rate coefficient for the spontaneous process monotonically decreases from <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>20</mn></mrow></msup></mrow></math></span> cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> s<sup>−1</sup> to <span><math><mrow><mn>2</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>22</mn></mrow></msup></mrow></math></span> cm<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> s<sup>−1</sup>. The rate coefficients for stimulated processes increase with increasing background-radiation temperatures by up to two orders of magnitude for <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>=</mo><mn>50</mn><mspace></mspace><mn>000</mn></mrow></math></span> K.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"348 \",\"pages\":\"Article 109699\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407325003619\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407325003619","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Stimulated radiative association of He and C is investigated for temperatures K and a wide range of background-radiation temperatures, K. New HeC potential energy curve is calculated by extrapolating the curves obtained by high-level ab initio calculations. Then the scattering cross section for the HeC formation by stimulated radiative association of He and C is calculated as a function of collision energy using a fully quantum mechanical approach. From these, the temperature-dependent rate coefficient of this process is determined for selected background temperatures. Barrier-less potential energy curve of HeC supports 24 vibrational levels and 674 bound rovibrational states. 88 rovibrational resonances embedded in the potential continuum participate in the radiative association process. The rate coefficient for the spontaneous process monotonically decreases from cm s−1 to cm s−1. The rate coefficients for stimulated processes increase with increasing background-radiation temperatures by up to two orders of magnitude for K.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.