结合非线性的三维径向NLS的阈值动力学

IF 2.3 2区 数学 Q1 MATHEMATICS
Alex H. Ardila , Jason Murphy , Jiqiang Zheng
{"title":"结合非线性的三维径向NLS的阈值动力学","authors":"Alex H. Ardila ,&nbsp;Jason Murphy ,&nbsp;Jiqiang Zheng","doi":"10.1016/j.jde.2025.113800","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the nonlinear Schrödinger equation with focusing quintic and defocusing cubic nonlinearity in three space dimensions:<span><span><span><math><mo>(</mo><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>Δ</mi><mo>)</mo><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup><mi>u</mi><mo>.</mo></math></span></span></span> In <span><span>[18]</span></span>, the authors classified the dynamics of solutions under the energy constraint <span><math><mi>E</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>&lt;</mo><msup><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><mi>W</mi><mo>)</mo></math></span>, where <em>W</em> is the quintic NLS ground state and <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msup></math></span> is the quintic NLS energy. In this work we classify the dynamics of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> solutions at the threshold <span><math><mi>E</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><mi>W</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113800"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold dynamics for the 3d radial NLS with combined nonlinearity\",\"authors\":\"Alex H. Ardila ,&nbsp;Jason Murphy ,&nbsp;Jiqiang Zheng\",\"doi\":\"10.1016/j.jde.2025.113800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the nonlinear Schrödinger equation with focusing quintic and defocusing cubic nonlinearity in three space dimensions:<span><span><span><math><mo>(</mo><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>Δ</mi><mo>)</mo><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>4</mn></mrow></msup><mi>u</mi><mo>.</mo></math></span></span></span> In <span><span>[18]</span></span>, the authors classified the dynamics of solutions under the energy constraint <span><math><mi>E</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>&lt;</mo><msup><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><mi>W</mi><mo>)</mo></math></span>, where <em>W</em> is the quintic NLS ground state and <span><math><msup><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msup></math></span> is the quintic NLS energy. In this work we classify the dynamics of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> solutions at the threshold <span><math><mi>E</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><mi>W</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113800\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008277\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008277","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑三维空间中具有聚焦五次和散焦三次非线性的非线性Schrödinger方程:(i∂t+Δ)u=|u|2u−|u|4u。在[18]中,作者对能量约束E(u)<Ec(W)下解的动力学进行了分类,其中W为五次NLS基态,Ec为五次NLS能量。在这项工作中,我们在阈值E(u)=Ec(W)处对H1解的动力学进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threshold dynamics for the 3d radial NLS with combined nonlinearity
We consider the nonlinear Schrödinger equation with focusing quintic and defocusing cubic nonlinearity in three space dimensions:(it+Δ)u=|u|2u|u|4u. In [18], the authors classified the dynamics of solutions under the energy constraint E(u)<Ec(W), where W is the quintic NLS ground state and Ec is the quintic NLS energy. In this work we classify the dynamics of H1 solutions at the threshold E(u)=Ec(W).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信