可压缩MHD系统在物理边界切向磁场和马赫数条件下的均匀正则性条件

IF 2.3 2区 数学 Q1 MATHEMATICS
Yingzhi Du , Tao Luo , Xin Xu
{"title":"可压缩MHD系统在物理边界切向磁场和马赫数条件下的均匀正则性条件","authors":"Yingzhi Du ,&nbsp;Tao Luo ,&nbsp;Xin Xu","doi":"10.1016/j.jde.2025.113801","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the uniform regularity of solutions to the compressible magnetohydrodynamics (MHD) system in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> in small Alfvén and Mach Numbers. The study focuses on the case where the magnetic field is tangential to the physical boundary, satisfying the perfect conducting boundary condition, while the velocity field adheres to a Navier-slip boundary condition. Under the condition that bounds the normal derivatives of the velocity and magnetic field uniformly in <em>ϵ</em> (the small Alfvén and Mach Numbers), we establish uniform estimates for the solutions in high-order conormal Sobolev norms. The results distinguish the previous works primarily addressing cases where the magnetic field is transversal to the boundary.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113801"},"PeriodicalIF":2.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditions for uniform regularity of compressible MHD system in small Alfvén and Mach numbers with tangential magnetic fields to the physical boundary\",\"authors\":\"Yingzhi Du ,&nbsp;Tao Luo ,&nbsp;Xin Xu\",\"doi\":\"10.1016/j.jde.2025.113801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the uniform regularity of solutions to the compressible magnetohydrodynamics (MHD) system in the half-space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>3</mn></mrow></msubsup></math></span> in small Alfvén and Mach Numbers. The study focuses on the case where the magnetic field is tangential to the physical boundary, satisfying the perfect conducting boundary condition, while the velocity field adheres to a Navier-slip boundary condition. Under the condition that bounds the normal derivatives of the velocity and magnetic field uniformly in <em>ϵ</em> (the small Alfvén and Mach Numbers), we establish uniform estimates for the solutions in high-order conormal Sobolev norms. The results distinguish the previous works primarily addressing cases where the magnetic field is transversal to the boundary.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"453 \",\"pages\":\"Article 113801\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625008289\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008289","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了半空间R+3中可压缩磁流体动力学(MHD)系统在小alfv和马赫数条件下解的均匀规律性。研究了磁场与物理边界切向,满足完美导电边界条件,而速度场则满足Navier-slip边界条件的情况。在速度和磁场的法向导数在λ(小alfv和马赫数)上有统一界的条件下,我们建立了高阶正规Sobolev范数解的统一估计。结果区别于以前的工作主要解决的情况下,磁场是横向的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditions for uniform regularity of compressible MHD system in small Alfvén and Mach numbers with tangential magnetic fields to the physical boundary
This paper investigates the uniform regularity of solutions to the compressible magnetohydrodynamics (MHD) system in the half-space R+3 in small Alfvén and Mach Numbers. The study focuses on the case where the magnetic field is tangential to the physical boundary, satisfying the perfect conducting boundary condition, while the velocity field adheres to a Navier-slip boundary condition. Under the condition that bounds the normal derivatives of the velocity and magnetic field uniformly in ϵ (the small Alfvén and Mach Numbers), we establish uniform estimates for the solutions in high-order conormal Sobolev norms. The results distinguish the previous works primarily addressing cases where the magnetic field is transversal to the boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信