空间二维Klein-Gordon-Zakharov方程的高阶能量不变快速算法

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Jie Chen , Jianqiang Sun
{"title":"空间二维Klein-Gordon-Zakharov方程的高阶能量不变快速算法","authors":"Jie Chen ,&nbsp;Jianqiang Sun","doi":"10.1016/j.camwa.2025.09.026","DOIUrl":null,"url":null,"abstract":"<div><div>Space two dimensional Klein-Gordon-Zakharov equations are directly changed into the Hamiltonian system with infinite dimensional space by the variational formula, which can be discretized into finite dimensional Hamiltonian system by Fourier pseudo-spectral method. The average vector field formulas with second and fourth order accuracy in time are utilized to compute the finite dimensional Hamiltonian system. In order to improve computation velocity of these formulas, the fast computation algorithm of these formulas is proposed by decomposing the spectral matrix. Solitary wave evolution of the equations is analyzed with different initial conditions by these new computational formulas. Energy invariant property, accuracy and computation efficiently of these new formulas are also investigated.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"201 ","pages":"Pages 18-34"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High order energy invariant fast algorithm for space two dimensional Klein-Gordon-Zakharov equations\",\"authors\":\"Jie Chen ,&nbsp;Jianqiang Sun\",\"doi\":\"10.1016/j.camwa.2025.09.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Space two dimensional Klein-Gordon-Zakharov equations are directly changed into the Hamiltonian system with infinite dimensional space by the variational formula, which can be discretized into finite dimensional Hamiltonian system by Fourier pseudo-spectral method. The average vector field formulas with second and fourth order accuracy in time are utilized to compute the finite dimensional Hamiltonian system. In order to improve computation velocity of these formulas, the fast computation algorithm of these formulas is proposed by decomposing the spectral matrix. Solitary wave evolution of the equations is analyzed with different initial conditions by these new computational formulas. Energy invariant property, accuracy and computation efficiently of these new formulas are also investigated.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"201 \",\"pages\":\"Pages 18-34\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125004079\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125004079","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

通过变分公式将空间二维Klein-Gordon-Zakharov方程直接转化为具有无限维空间的哈密顿系统,并通过傅里叶伪谱方法将其离散为有限维哈密顿系统。利用具有二阶和四阶时间精度的平均向量场公式来计算有限维哈密顿系统。为了提高这些公式的计算速度,提出了对谱矩阵进行分解的快速计算算法。用这些新的计算公式分析了方程在不同初始条件下的孤波演化。研究了新公式的能量不变性、精度和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High order energy invariant fast algorithm for space two dimensional Klein-Gordon-Zakharov equations
Space two dimensional Klein-Gordon-Zakharov equations are directly changed into the Hamiltonian system with infinite dimensional space by the variational formula, which can be discretized into finite dimensional Hamiltonian system by Fourier pseudo-spectral method. The average vector field formulas with second and fourth order accuracy in time are utilized to compute the finite dimensional Hamiltonian system. In order to improve computation velocity of these formulas, the fast computation algorithm of these formulas is proposed by decomposing the spectral matrix. Solitary wave evolution of the equations is analyzed with different initial conditions by these new computational formulas. Energy invariant property, accuracy and computation efficiently of these new formulas are also investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信