Esteban Andruchow , Gabriel Larotonda , Lázaro Recht
{"title":"C -代数的Grassmann流形中的共轭点","authors":"Esteban Andruchow , Gabriel Larotonda , Lázaro Recht","doi":"10.1016/j.geomphys.2025.105654","DOIUrl":null,"url":null,"abstract":"<div><div>Let <figure><img></figure> be a component of the Grassmann manifold of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra, presented as the unitary orbit of a given orthogonal projection <figure><img></figure>. There are several natural connections on this manifold, and we first show that they all agree (in the presence of a finite trace in <span><math><mi>A</mi></math></span>, when we give <figure><img></figure> the Riemannian metric induced by the Killing form, this is the Levi-Civita connection of the metric). We study the cut locus of <figure><img></figure> for the spectral rectifiable distance, and also the conjugate tangent locus of <figure><img></figure> along a geodesic. Furthermore, for each tangent vector <em>V</em> at <em>P</em>, we compute the kernel of the differential of the exponential map of the connection. We exhibit examples where points that are tangent conjugate in the classical setting, fail to be conjugate: in some cases they are not monoconjugate but epinconjugate, and in other cases they are not conjugate at all.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"218 ","pages":"Article 105654"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugate points in the Grassmann manifold of a C⁎-algebra\",\"authors\":\"Esteban Andruchow , Gabriel Larotonda , Lázaro Recht\",\"doi\":\"10.1016/j.geomphys.2025.105654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <figure><img></figure> be a component of the Grassmann manifold of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra, presented as the unitary orbit of a given orthogonal projection <figure><img></figure>. There are several natural connections on this manifold, and we first show that they all agree (in the presence of a finite trace in <span><math><mi>A</mi></math></span>, when we give <figure><img></figure> the Riemannian metric induced by the Killing form, this is the Levi-Civita connection of the metric). We study the cut locus of <figure><img></figure> for the spectral rectifiable distance, and also the conjugate tangent locus of <figure><img></figure> along a geodesic. Furthermore, for each tangent vector <em>V</em> at <em>P</em>, we compute the kernel of the differential of the exponential map of the connection. We exhibit examples where points that are tangent conjugate in the classical setting, fail to be conjugate: in some cases they are not monoconjugate but epinconjugate, and in other cases they are not conjugate at all.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"218 \",\"pages\":\"Article 105654\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025002396\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025002396","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Conjugate points in the Grassmann manifold of a C⁎-algebra
Let be a component of the Grassmann manifold of a -algebra, presented as the unitary orbit of a given orthogonal projection . There are several natural connections on this manifold, and we first show that they all agree (in the presence of a finite trace in , when we give the Riemannian metric induced by the Killing form, this is the Levi-Civita connection of the metric). We study the cut locus of for the spectral rectifiable distance, and also the conjugate tangent locus of along a geodesic. Furthermore, for each tangent vector V at P, we compute the kernel of the differential of the exponential map of the connection. We exhibit examples where points that are tangent conjugate in the classical setting, fail to be conjugate: in some cases they are not monoconjugate but epinconjugate, and in other cases they are not conjugate at all.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity