M. Huzaifa Yaseen , Rida Hashmi , Najla A. Mohammed , Hala A Hejazi
{"title":"用李对称方法求两个非线性椭圆型偏微分方程系统的微分不变量","authors":"M. Huzaifa Yaseen , Rida Hashmi , Najla A. Mohammed , Hala A Hejazi","doi":"10.1016/j.geomphys.2025.105650","DOIUrl":null,"url":null,"abstract":"<div><div>The Lie symmetry method offers a systematic approach for analyzing and solving differential equations by identifying continuous transformations that preserve their structure. In this study, we investigate a general system of two nonlinear second-order elliptic partial differential equations using Lie symmetry techniques. We compute the equivalence transformations for the system, which serve as the foundation for deriving differential invariants. Specifically, we establish both joint differential invariants that are obtained under transformations of dependent and independent variables along with semi-differential invariants, derived solely from transformations of dependent variables. These invariants play a crucial role in reducing the system to its simplest possible form while retaining its essential features. By applying these differential invariants, we present reduced forms of various nonlinear systems of elliptic partial differential equations, demonstrating the effectiveness of the method in simplifying complex equations. Our results highlight the utility of Lie symmetry analysis in deriving invariant structures and facilitating the systematic reduction of coupled nonlinear systems of partial differential equations.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"218 ","pages":"Article 105650"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential invariants of systems of two nonlinear elliptic partial differential equations by Lie symmetry method\",\"authors\":\"M. Huzaifa Yaseen , Rida Hashmi , Najla A. Mohammed , Hala A Hejazi\",\"doi\":\"10.1016/j.geomphys.2025.105650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Lie symmetry method offers a systematic approach for analyzing and solving differential equations by identifying continuous transformations that preserve their structure. In this study, we investigate a general system of two nonlinear second-order elliptic partial differential equations using Lie symmetry techniques. We compute the equivalence transformations for the system, which serve as the foundation for deriving differential invariants. Specifically, we establish both joint differential invariants that are obtained under transformations of dependent and independent variables along with semi-differential invariants, derived solely from transformations of dependent variables. These invariants play a crucial role in reducing the system to its simplest possible form while retaining its essential features. By applying these differential invariants, we present reduced forms of various nonlinear systems of elliptic partial differential equations, demonstrating the effectiveness of the method in simplifying complex equations. Our results highlight the utility of Lie symmetry analysis in deriving invariant structures and facilitating the systematic reduction of coupled nonlinear systems of partial differential equations.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"218 \",\"pages\":\"Article 105650\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025002359\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025002359","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Differential invariants of systems of two nonlinear elliptic partial differential equations by Lie symmetry method
The Lie symmetry method offers a systematic approach for analyzing and solving differential equations by identifying continuous transformations that preserve their structure. In this study, we investigate a general system of two nonlinear second-order elliptic partial differential equations using Lie symmetry techniques. We compute the equivalence transformations for the system, which serve as the foundation for deriving differential invariants. Specifically, we establish both joint differential invariants that are obtained under transformations of dependent and independent variables along with semi-differential invariants, derived solely from transformations of dependent variables. These invariants play a crucial role in reducing the system to its simplest possible form while retaining its essential features. By applying these differential invariants, we present reduced forms of various nonlinear systems of elliptic partial differential equations, demonstrating the effectiveness of the method in simplifying complex equations. Our results highlight the utility of Lie symmetry analysis in deriving invariant structures and facilitating the systematic reduction of coupled nonlinear systems of partial differential equations.
期刊介绍:
The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields.
The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered.
The Journal covers the following areas of research:
Methods of:
• Algebraic and Differential Topology
• Algebraic Geometry
• Real and Complex Differential Geometry
• Riemannian Manifolds
• Symplectic Geometry
• Global Analysis, Analysis on Manifolds
• Geometric Theory of Differential Equations
• Geometric Control Theory
• Lie Groups and Lie Algebras
• Supermanifolds and Supergroups
• Discrete Geometry
• Spinors and Twistors
Applications to:
• Strings and Superstrings
• Noncommutative Topology and Geometry
• Quantum Groups
• Geometric Methods in Statistics and Probability
• Geometry Approaches to Thermodynamics
• Classical and Quantum Dynamical Systems
• Classical and Quantum Integrable Systems
• Classical and Quantum Mechanics
• Classical and Quantum Field Theory
• General Relativity
• Quantum Information
• Quantum Gravity