{"title":"递增有界一致连续函数的扩展","authors":"Kaori Yamazaki","doi":"10.1016/j.topol.2025.109599","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we show that, for an increasing bounded uniformly continuous function <em>f</em> on a subspace <em>A</em> of a uniform space <em>X</em> equipped with a preorder, <em>f</em> can be extended to an increasing uniformly continuous function on <em>X</em> if and only if <em>f</em> is uniformly completely order separated in <em>X</em>. This extends McShane's Extension Theorem for metric spaces and Katětov's Theorem for uniform spaces. Moreover, we establish a characterization of a uniform/metric space <em>X</em> equipped with a preorder possessing the monotone uniform extension property, which answers a question asked by E.A.Ok.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"377 ","pages":"Article 109599"},"PeriodicalIF":0.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extensions of increasing bounded uniformly continuous functions\",\"authors\":\"Kaori Yamazaki\",\"doi\":\"10.1016/j.topol.2025.109599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we show that, for an increasing bounded uniformly continuous function <em>f</em> on a subspace <em>A</em> of a uniform space <em>X</em> equipped with a preorder, <em>f</em> can be extended to an increasing uniformly continuous function on <em>X</em> if and only if <em>f</em> is uniformly completely order separated in <em>X</em>. This extends McShane's Extension Theorem for metric spaces and Katětov's Theorem for uniform spaces. Moreover, we establish a characterization of a uniform/metric space <em>X</em> equipped with a preorder possessing the monotone uniform extension property, which answers a question asked by E.A.Ok.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"377 \",\"pages\":\"Article 109599\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003979\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003979","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Extensions of increasing bounded uniformly continuous functions
In this paper, we show that, for an increasing bounded uniformly continuous function f on a subspace A of a uniform space X equipped with a preorder, f can be extended to an increasing uniformly continuous function on X if and only if f is uniformly completely order separated in X. This extends McShane's Extension Theorem for metric spaces and Katětov's Theorem for uniform spaces. Moreover, we establish a characterization of a uniform/metric space X equipped with a preorder possessing the monotone uniform extension property, which answers a question asked by E.A.Ok.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.