黎曼叶理的横向ft -熵

IF 1.2 3区 数学 Q1 MATHEMATICS
Dexie Lin
{"title":"黎曼叶理的横向ft -熵","authors":"Dexie Lin","doi":"10.1016/j.jmaa.2025.130070","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce an entropy functional on Riemannian foliations, inspired by the work of Perelman. We relate its gradient flow to the transverse Ricci flow via the foliation preserving diffeomorphisms. We show that it is monotonic along the transverse Ricci flow. Moreover, inspired by the work of Fuquan Fang and Yuguang Zhang, we give a sufficient condition for any codimension-4 Riemannian foliation to admit the transverse Einstein metric.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"556 1","pages":"Article 130070"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transverse FT-entropy for Riemannian foliations\",\"authors\":\"Dexie Lin\",\"doi\":\"10.1016/j.jmaa.2025.130070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce an entropy functional on Riemannian foliations, inspired by the work of Perelman. We relate its gradient flow to the transverse Ricci flow via the foliation preserving diffeomorphisms. We show that it is monotonic along the transverse Ricci flow. Moreover, inspired by the work of Fuquan Fang and Yuguang Zhang, we give a sufficient condition for any codimension-4 Riemannian foliation to admit the transverse Einstein metric.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"556 1\",\"pages\":\"Article 130070\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008510\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008510","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从佩雷尔曼的工作中得到启发,引入黎曼叶上的熵泛函。我们将其梯度流与横里奇流通过保持叶理的微分同态联系起来。我们证明了它沿横向里奇流是单调的。此外,受方福全和张玉光工作的启发,我们给出了任何余维-4黎曼叶化存在横向爱因斯坦度规的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transverse FT-entropy for Riemannian foliations
In this paper, we introduce an entropy functional on Riemannian foliations, inspired by the work of Perelman. We relate its gradient flow to the transverse Ricci flow via the foliation preserving diffeomorphisms. We show that it is monotonic along the transverse Ricci flow. Moreover, inspired by the work of Fuquan Fang and Yuguang Zhang, we give a sufficient condition for any codimension-4 Riemannian foliation to admit the transverse Einstein metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信