D. Lj. Djukić , N.M. Mutavdžić , R.M. Mutavdžić Djukić
{"title":"圆上α-调和函数的插值","authors":"D. Lj. Djukić , N.M. Mutavdžić , R.M. Mutavdžić Djukić","doi":"10.1016/j.cam.2025.117062","DOIUrl":null,"url":null,"abstract":"<div><div>Similarly to harmonic functions, an <span><math><mi>α</mi></math></span>-harmonic function <span><math><mi>u</mi></math></span> on the unit disc <span><math><mi>D</mi></math></span> is uniquely determined by its values on the boundary of the disc <span><math><mrow><mi>∂</mi><mi>D</mi></mrow></math></span>. Depending on <span><math><mi>α</mi></math></span>, we investigate interpolatory formulas for approximating <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>ζ</mi><mo>)</mo></mrow></mrow></math></span> for any given <span><math><mi>ζ</mi></math></span>, as a weighted sum of values of <span><math><mi>u</mi></math></span> at <span><math><mi>n</mi></math></span> nodes on <span><math><mrow><mi>∂</mi><mi>D</mi></mrow></math></span>. We show how to construct such formulas of highest possible algebraic degree of exactness and discuss their convergence.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117062"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpolation of α-harmonic functions on a circle\",\"authors\":\"D. Lj. Djukić , N.M. Mutavdžić , R.M. Mutavdžić Djukić\",\"doi\":\"10.1016/j.cam.2025.117062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Similarly to harmonic functions, an <span><math><mi>α</mi></math></span>-harmonic function <span><math><mi>u</mi></math></span> on the unit disc <span><math><mi>D</mi></math></span> is uniquely determined by its values on the boundary of the disc <span><math><mrow><mi>∂</mi><mi>D</mi></mrow></math></span>. Depending on <span><math><mi>α</mi></math></span>, we investigate interpolatory formulas for approximating <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>ζ</mi><mo>)</mo></mrow></mrow></math></span> for any given <span><math><mi>ζ</mi></math></span>, as a weighted sum of values of <span><math><mi>u</mi></math></span> at <span><math><mi>n</mi></math></span> nodes on <span><math><mrow><mi>∂</mi><mi>D</mi></mrow></math></span>. We show how to construct such formulas of highest possible algebraic degree of exactness and discuss their convergence.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117062\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037704272500576X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037704272500576X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Similarly to harmonic functions, an -harmonic function on the unit disc is uniquely determined by its values on the boundary of the disc . Depending on , we investigate interpolatory formulas for approximating for any given , as a weighted sum of values of at nodes on . We show how to construct such formulas of highest possible algebraic degree of exactness and discuss their convergence.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.