关于一类特殊的Volterra-Fredholm积分方程的注释

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Giuseppe Mastroianni , Incoronata Notarangelo
{"title":"关于一类特殊的Volterra-Fredholm积分方程的注释","authors":"Giuseppe Mastroianni ,&nbsp;Incoronata Notarangelo","doi":"10.1016/j.cam.2025.117119","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a global method based on Lagrange interpolation at Jacobi nodes to approximate the solution of second-kind Volterra–Fredholm integral equations on the interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. The considered equations involve kernels with a multiple zero at the origin and Jacobi-type weight functions, allowing for algebraic endpoint singularities in the data. Accordingly, the problem is studied in suitable weighted spaces of continuous functions.</div><div>We prove the stability and convergence of our numerical method and derive explicit a priori error estimates in the weighted uniform norm, showing that the approximation essentially achieves the convergence rate of the best weighted polynomial approximation, up to an additional logarithmic factor <span><math><mrow><mo>log</mo><mi>m</mi></mrow></math></span>. Some numerical experiments are presented to illustrate the accuracy and efficiency of the proposed approach.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117119"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on a special class of Volterra–Fredholm integral equations\",\"authors\":\"Giuseppe Mastroianni ,&nbsp;Incoronata Notarangelo\",\"doi\":\"10.1016/j.cam.2025.117119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We propose a global method based on Lagrange interpolation at Jacobi nodes to approximate the solution of second-kind Volterra–Fredholm integral equations on the interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. The considered equations involve kernels with a multiple zero at the origin and Jacobi-type weight functions, allowing for algebraic endpoint singularities in the data. Accordingly, the problem is studied in suitable weighted spaces of continuous functions.</div><div>We prove the stability and convergence of our numerical method and derive explicit a priori error estimates in the weighted uniform norm, showing that the approximation essentially achieves the convergence rate of the best weighted polynomial approximation, up to an additional logarithmic factor <span><math><mrow><mo>log</mo><mi>m</mi></mrow></math></span>. Some numerical experiments are presented to illustrate the accuracy and efficiency of the proposed approach.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117119\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725006338\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725006338","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于Jacobi节点Lagrange插值的全局逼近方法,用于逼近区间[−1,1]上的第二类Volterra-Fredholm积分方程的解。所考虑的方程涉及在原点具有多个零的核和jacobi型权重函数,允许数据中的代数端点奇点。据此,在连续函数的合适加权空间中研究了该问题。我们证明了我们的数值方法的稳定性和收敛性,并在加权一致范数中导出了显式的先验误差估计,表明该近似基本上达到了最佳加权多项式近似的收敛速率,直到一个额外的对数因子logm。数值实验证明了该方法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A remark on a special class of Volterra–Fredholm integral equations
We propose a global method based on Lagrange interpolation at Jacobi nodes to approximate the solution of second-kind Volterra–Fredholm integral equations on the interval [1,1]. The considered equations involve kernels with a multiple zero at the origin and Jacobi-type weight functions, allowing for algebraic endpoint singularities in the data. Accordingly, the problem is studied in suitable weighted spaces of continuous functions.
We prove the stability and convergence of our numerical method and derive explicit a priori error estimates in the weighted uniform norm, showing that the approximation essentially achieves the convergence rate of the best weighted polynomial approximation, up to an additional logarithmic factor logm. Some numerical experiments are presented to illustrate the accuracy and efficiency of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信