{"title":"IMEX BDF方法对DDEs和PDDEs的稳定性研究","authors":"Ana Tercero-Báez , Jesús Martín-Vaquero","doi":"10.1016/j.cam.2025.117044","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the stability of IMEX-BDF methods for delay differential equations (DDEs) is studied based on the test equation <span><math><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mi>A</mi><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>B</mi><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>τ</mi></math></span> is a constant delay, <span><math><mi>A</mi></math></span> diagonalizes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, but <span><math><mi>B</mi></math></span> might be any matrix. First, it is analyzed the case where both matrices diagonalize simultaneously, and sufficient conditions to obtain linear stability are proved. However, the paper focuses on the case where the matrices <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are not simultaneously diagonalizable. The concept of field of values, denoted by <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span>, is used to prove a sufficient condition for unconditional stability of these methods: if <span><math><mi>A</mi></math></span> is Hermitian, IMEX-BDF2 is unconditionally stable whenever <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mo>)</mo></mrow></mrow></math></span> is contained in the disk centered at 0 and radius <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>, while IMEX-BDF3 is unconditionally stable whenever <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mo>)</mo></mrow><mo>⊆</mo><mi>D</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>. Furthermore, sufficient conditions are derived to ensure stability, but according to the step size as a function of the radius of the disk containing <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mo>)</mo></mrow></mrow></math></span>. The approach developed herein is illustrated through several examples in which the discussed theory is applied not only to DDEs, but also to parabolic problems given by partial delay differential equations (PDDEs) with a diffusion term.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117044"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stability of IMEX BDF methods for DDEs and PDDEs\",\"authors\":\"Ana Tercero-Báez , Jesús Martín-Vaquero\",\"doi\":\"10.1016/j.cam.2025.117044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the stability of IMEX-BDF methods for delay differential equations (DDEs) is studied based on the test equation <span><math><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><mi>A</mi><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>B</mi><mi>y</mi><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>τ</mi></math></span> is a constant delay, <span><math><mi>A</mi></math></span> diagonalizes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, but <span><math><mi>B</mi></math></span> might be any matrix. First, it is analyzed the case where both matrices diagonalize simultaneously, and sufficient conditions to obtain linear stability are proved. However, the paper focuses on the case where the matrices <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are not simultaneously diagonalizable. The concept of field of values, denoted by <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow></mrow></math></span>, is used to prove a sufficient condition for unconditional stability of these methods: if <span><math><mi>A</mi></math></span> is Hermitian, IMEX-BDF2 is unconditionally stable whenever <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mo>)</mo></mrow></mrow></math></span> is contained in the disk centered at 0 and radius <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>, <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>, while IMEX-BDF3 is unconditionally stable whenever <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mo>)</mo></mrow><mo>⊆</mo><mi>D</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>. Furthermore, sufficient conditions are derived to ensure stability, but according to the step size as a function of the radius of the disk containing <span><math><mrow><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>B</mi><mo>)</mo></mrow></mrow></math></span>. The approach developed herein is illustrated through several examples in which the discussed theory is applied not only to DDEs, but also to parabolic problems given by partial delay differential equations (PDDEs) with a diffusion term.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117044\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725005588\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725005588","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the stability of IMEX BDF methods for DDEs and PDDEs
In this paper, the stability of IMEX-BDF methods for delay differential equations (DDEs) is studied based on the test equation , where is a constant delay, diagonalizes in , but might be any matrix. First, it is analyzed the case where both matrices diagonalize simultaneously, and sufficient conditions to obtain linear stability are proved. However, the paper focuses on the case where the matrices and are not simultaneously diagonalizable. The concept of field of values, denoted by , is used to prove a sufficient condition for unconditional stability of these methods: if is Hermitian, IMEX-BDF2 is unconditionally stable whenever is contained in the disk centered at 0 and radius , , while IMEX-BDF3 is unconditionally stable whenever . Furthermore, sufficient conditions are derived to ensure stability, but according to the step size as a function of the radius of the disk containing . The approach developed herein is illustrated through several examples in which the discussed theory is applied not only to DDEs, but also to parabolic problems given by partial delay differential equations (PDDEs) with a diffusion term.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.