温室用水需求预测的混合深度学习模型:探索都市农业中的能源关系

IF 9.5 Q1 ENERGY & FUELS
Arash Moradzadeh , Lazhar Ben-Brahim , Ali Arefi , Arman Oshnoei , S.M. Muyeen
{"title":"温室用水需求预测的混合深度学习模型:探索都市农业中的能源关系","authors":"Arash Moradzadeh ,&nbsp;Lazhar Ben-Brahim ,&nbsp;Ali Arefi ,&nbsp;Arman Oshnoei ,&nbsp;S.M. Muyeen","doi":"10.1016/j.nexus.2025.100546","DOIUrl":null,"url":null,"abstract":"<div><div>Precise water demand forecasting (WDF) is crucial for sustainable irrigation and resource efficiency in urban greenhouse systems. This study introduces a cutting-edge hybrid deep learning approach designed for short-term WDF, while also considering the energy nexus between water, energy, and environmental factors. The model integrates the least squares generative adversarial network (LSGAN) for data pre-processing and noise reduction, convolutional neural networks (CNN) for feature selection, and bidirectional long short-term memory (BiLSTM) for time-series state modeling, and named as LSGAN<img>CBiLSTM. Using real-world data from the Wageningen Research Centre in Bleiswijk, Netherlands, the model significantly outperformed benchmark approaches, achieving an R-value of 99.57 % with minimal forecasting errors. The model demonstrated exceptional stability, minimal bias, and strong handling of environmental variability, improving short-term WDF accuracy, optimizing water management in urban agriculture, enhancing sustainable irrigation, and addressing the energy nexus for efficient resource use.</div></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"20 ","pages":"Article 100546"},"PeriodicalIF":9.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid deep learning models for water demand forecasting in greenhouses: Exploring the energy Nexus in Urban agriculture\",\"authors\":\"Arash Moradzadeh ,&nbsp;Lazhar Ben-Brahim ,&nbsp;Ali Arefi ,&nbsp;Arman Oshnoei ,&nbsp;S.M. Muyeen\",\"doi\":\"10.1016/j.nexus.2025.100546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Precise water demand forecasting (WDF) is crucial for sustainable irrigation and resource efficiency in urban greenhouse systems. This study introduces a cutting-edge hybrid deep learning approach designed for short-term WDF, while also considering the energy nexus between water, energy, and environmental factors. The model integrates the least squares generative adversarial network (LSGAN) for data pre-processing and noise reduction, convolutional neural networks (CNN) for feature selection, and bidirectional long short-term memory (BiLSTM) for time-series state modeling, and named as LSGAN<img>CBiLSTM. Using real-world data from the Wageningen Research Centre in Bleiswijk, Netherlands, the model significantly outperformed benchmark approaches, achieving an R-value of 99.57 % with minimal forecasting errors. The model demonstrated exceptional stability, minimal bias, and strong handling of environmental variability, improving short-term WDF accuracy, optimizing water management in urban agriculture, enhancing sustainable irrigation, and addressing the energy nexus for efficient resource use.</div></div>\",\"PeriodicalId\":93548,\"journal\":{\"name\":\"Energy nexus\",\"volume\":\"20 \",\"pages\":\"Article 100546\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277242712500186X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242712500186X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

精确的需水量预测对城市温室系统的可持续灌溉和资源效率至关重要。本研究引入了一种尖端的混合深度学习方法,用于短期WDF,同时也考虑了水、能源和环境因素之间的能量联系。该模型集成了用于数据预处理和降噪的最小二乘生成对抗网络(LSGAN)、用于特征选择的卷积神经网络(CNN)和用于时间序列状态建模的双向长短期记忆(BiLSTM),命名为LSGANCBiLSTM。使用来自荷兰bliswijk的Wageningen研究中心的真实数据,该模型显著优于基准方法,r值达到99.57%,预测误差最小。该模型表现出卓越的稳定性、最小的偏差和对环境变化的强大处理能力,提高了短期WDF的准确性,优化了城市农业的水管理,增强了可持续灌溉,并解决了能源关系,实现了资源的有效利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid deep learning models for water demand forecasting in greenhouses: Exploring the energy Nexus in Urban agriculture
Precise water demand forecasting (WDF) is crucial for sustainable irrigation and resource efficiency in urban greenhouse systems. This study introduces a cutting-edge hybrid deep learning approach designed for short-term WDF, while also considering the energy nexus between water, energy, and environmental factors. The model integrates the least squares generative adversarial network (LSGAN) for data pre-processing and noise reduction, convolutional neural networks (CNN) for feature selection, and bidirectional long short-term memory (BiLSTM) for time-series state modeling, and named as LSGANCBiLSTM. Using real-world data from the Wageningen Research Centre in Bleiswijk, Netherlands, the model significantly outperformed benchmark approaches, achieving an R-value of 99.57 % with minimal forecasting errors. The model demonstrated exceptional stability, minimal bias, and strong handling of environmental variability, improving short-term WDF accuracy, optimizing water management in urban agriculture, enhancing sustainable irrigation, and addressing the energy nexus for efficient resource use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy nexus
Energy nexus Energy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
109 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信