基于无人机的未知管道检测路径规划决策系统

IF 5.2 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Dekai Lin, Ruitao Ma, Yin Zhao, Jiakuo Zhang, Shubin Liu, Hang Zhu
{"title":"基于无人机的未知管道检测路径规划决策系统","authors":"Dekai Lin,&nbsp;Ruitao Ma,&nbsp;Yin Zhao,&nbsp;Jiakuo Zhang,&nbsp;Shubin Liu,&nbsp;Hang Zhu","doi":"10.1016/j.robot.2025.105194","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces the Pipeline-Aimed path Planner (PAPlanner), a sampling-based path planner for UAVs in unknown oil/gas pipelines. Its key contributions include a dynamic anchor point update strategy and path optimization that adapts to bends and diameter changes, eliminating redundant backtracking and enabling continuous exploration. By integrating real-time voxel maps, the algorithm optimizes paths to stay near the pipeline axis. Simulation results show that PAPlanner reduces average path length by 26.4% compared to the advanced MBPlanner method in the elbow scene experiment, demonstrating efficient safe trajectory maintenance. In the variable diameter scene experiment, where MBPlanner fails frequently, PAPlanner achieves a 0% failure rate. Real flight experiments validate its robustness with a 0.309 m average trajectory deviation from the axis, confirming reliable navigation. This work presents a novel framework enhancing UAV exploration efficiency in pipelines, overcoming limitations of existing algorithms for autonomous inspection in sensor-degraded confined environments.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"195 ","pages":"Article 105194"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A path planning decision system for unknown pipeline detection using UAVs\",\"authors\":\"Dekai Lin,&nbsp;Ruitao Ma,&nbsp;Yin Zhao,&nbsp;Jiakuo Zhang,&nbsp;Shubin Liu,&nbsp;Hang Zhu\",\"doi\":\"10.1016/j.robot.2025.105194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces the Pipeline-Aimed path Planner (PAPlanner), a sampling-based path planner for UAVs in unknown oil/gas pipelines. Its key contributions include a dynamic anchor point update strategy and path optimization that adapts to bends and diameter changes, eliminating redundant backtracking and enabling continuous exploration. By integrating real-time voxel maps, the algorithm optimizes paths to stay near the pipeline axis. Simulation results show that PAPlanner reduces average path length by 26.4% compared to the advanced MBPlanner method in the elbow scene experiment, demonstrating efficient safe trajectory maintenance. In the variable diameter scene experiment, where MBPlanner fails frequently, PAPlanner achieves a 0% failure rate. Real flight experiments validate its robustness with a 0.309 m average trajectory deviation from the axis, confirming reliable navigation. This work presents a novel framework enhancing UAV exploration efficiency in pipelines, overcoming limitations of existing algorithms for autonomous inspection in sensor-degraded confined environments.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"195 \",\"pages\":\"Article 105194\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092188902500291X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092188902500291X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于采样的无人机在未知油气管道中的路径规划方法——管道目标路径规划器(PAPlanner)。它的主要贡献包括动态锚点更新策略和路径优化,以适应弯道和直径的变化,消除冗余的回溯,实现持续勘探。通过整合实时体素地图,该算法优化路径以保持在管道轴附近。仿真结果表明,在弯道场景实验中,与先进的MBPlanner方法相比,PAPlanner方法的平均路径长度减少了26.4%,显示了有效的安全轨迹维护。在变直径场景实验中,MBPlanner故障频繁,PAPlanner的故障率为0%。实际飞行实验验证了该系统的鲁棒性,平均轨迹偏离轴线0.309 m,导航可靠。本文提出了一种新的框架,提高了无人机在管道中的探测效率,克服了现有算法在传感器退化受限环境中自主检测的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A path planning decision system for unknown pipeline detection using UAVs
This paper introduces the Pipeline-Aimed path Planner (PAPlanner), a sampling-based path planner for UAVs in unknown oil/gas pipelines. Its key contributions include a dynamic anchor point update strategy and path optimization that adapts to bends and diameter changes, eliminating redundant backtracking and enabling continuous exploration. By integrating real-time voxel maps, the algorithm optimizes paths to stay near the pipeline axis. Simulation results show that PAPlanner reduces average path length by 26.4% compared to the advanced MBPlanner method in the elbow scene experiment, demonstrating efficient safe trajectory maintenance. In the variable diameter scene experiment, where MBPlanner fails frequently, PAPlanner achieves a 0% failure rate. Real flight experiments validate its robustness with a 0.309 m average trajectory deviation from the axis, confirming reliable navigation. This work presents a novel framework enhancing UAV exploration efficiency in pipelines, overcoming limitations of existing algorithms for autonomous inspection in sensor-degraded confined environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信