具有不同拓扑结构的聚吡咯原位封装普鲁士蓝类似物,用于高效电磁波吸收

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Yongwen Yang , Jiayue Wen , Yue Zhang , Xin Yang , Weiping Ye , Kunyao Cao , Changyi Zheng , Qing Pang , Rui Zhao , Wenjian Wang , Weidong Xue
{"title":"具有不同拓扑结构的聚吡咯原位封装普鲁士蓝类似物,用于高效电磁波吸收","authors":"Yongwen Yang ,&nbsp;Jiayue Wen ,&nbsp;Yue Zhang ,&nbsp;Xin Yang ,&nbsp;Weiping Ye ,&nbsp;Kunyao Cao ,&nbsp;Changyi Zheng ,&nbsp;Qing Pang ,&nbsp;Rui Zhao ,&nbsp;Wenjian Wang ,&nbsp;Weidong Xue","doi":"10.1016/j.susmat.2025.e01620","DOIUrl":null,"url":null,"abstract":"<div><div>The poor conductivity of Prussian Blue Analogues (PBAs) and their tendency to agglomerate during pyrolysis limit their application in the field of microwave absorption. To address the aforementioned issues, this study employed polypyrrole (PPy) as a coating layer and utilized Prussian blue analogues (PBAs) with uniform particle sizes in box-like and cage-like topological structures as precursors, successfully preparing B-CoFe/C@PPy and C-CoFe/C@PPy nanoparticles featuring heterogeneous interfaces. The method utilizes a post-thermal-treatment ice-bath coating process, which effectively preserves the original morphological structure of nanoparticles while achieving successful PPy encapsulation. The PPy coating significantly enhances the material's dielectric constant, thereby improving impedance matching and conductive loss. And combined with the synergistic effect of interfacial polarization relaxation induced by heterogeneous interfaces, the composite achieves exceptional EMWA performance. At a filler loading of 30 wt%, C-CoFe/C@PPy exhibits an effective absorption bandwidth of 6.16 GHz at a thickness of 2.2 mm, and the minimum reflection loss can reach −28.10 dB at 1.8 mm. It is believed that this work will enrich the research on polymer-encapsulated PBAs-derived microwave absorbing materials with superior performance.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"46 ","pages":"Article e01620"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polypyrrole in-situ encapsulated Prussian blue analogues with diverse topologies for high-efficiency electromagnetic wave absorption\",\"authors\":\"Yongwen Yang ,&nbsp;Jiayue Wen ,&nbsp;Yue Zhang ,&nbsp;Xin Yang ,&nbsp;Weiping Ye ,&nbsp;Kunyao Cao ,&nbsp;Changyi Zheng ,&nbsp;Qing Pang ,&nbsp;Rui Zhao ,&nbsp;Wenjian Wang ,&nbsp;Weidong Xue\",\"doi\":\"10.1016/j.susmat.2025.e01620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The poor conductivity of Prussian Blue Analogues (PBAs) and their tendency to agglomerate during pyrolysis limit their application in the field of microwave absorption. To address the aforementioned issues, this study employed polypyrrole (PPy) as a coating layer and utilized Prussian blue analogues (PBAs) with uniform particle sizes in box-like and cage-like topological structures as precursors, successfully preparing B-CoFe/C@PPy and C-CoFe/C@PPy nanoparticles featuring heterogeneous interfaces. The method utilizes a post-thermal-treatment ice-bath coating process, which effectively preserves the original morphological structure of nanoparticles while achieving successful PPy encapsulation. The PPy coating significantly enhances the material's dielectric constant, thereby improving impedance matching and conductive loss. And combined with the synergistic effect of interfacial polarization relaxation induced by heterogeneous interfaces, the composite achieves exceptional EMWA performance. At a filler loading of 30 wt%, C-CoFe/C@PPy exhibits an effective absorption bandwidth of 6.16 GHz at a thickness of 2.2 mm, and the minimum reflection loss can reach −28.10 dB at 1.8 mm. It is believed that this work will enrich the research on polymer-encapsulated PBAs-derived microwave absorbing materials with superior performance.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"46 \",\"pages\":\"Article e01620\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725003884\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725003884","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

普鲁士蓝类似物(PBAs)的导电性差,在热解过程中容易结块,限制了其在微波吸收领域的应用。为了解决上述问题,本研究以聚吡咯(PPy)为包覆层,以盒状和笼状拓扑结构中粒径均匀的普鲁士蓝类似物(PBAs)为前驱体,成功制备了具有非均相界面的B-CoFe/C@PPy和C-CoFe/C@PPy纳米颗粒。该方法采用热处理后冰浴涂层工艺,有效地保留了纳米颗粒的原始形态结构,同时成功地实现了PPy封装。PPy涂层显著提高了材料的介电常数,从而改善了阻抗匹配和导电损耗。结合非均相界面诱导的界面极化弛豫的协同效应,复合材料获得了优异的EMWA性能。当填充量为30 wt%时,C-CoFe/C@PPy在厚度为2.2 mm时的有效吸收带宽为6.16 GHz,在厚度为1.8 mm时的最小反射损耗为−28.10 dB。相信本工作将丰富聚合物包封pbas衍生的高性能吸波材料的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polypyrrole in-situ encapsulated Prussian blue analogues with diverse topologies for high-efficiency electromagnetic wave absorption
The poor conductivity of Prussian Blue Analogues (PBAs) and their tendency to agglomerate during pyrolysis limit their application in the field of microwave absorption. To address the aforementioned issues, this study employed polypyrrole (PPy) as a coating layer and utilized Prussian blue analogues (PBAs) with uniform particle sizes in box-like and cage-like topological structures as precursors, successfully preparing B-CoFe/C@PPy and C-CoFe/C@PPy nanoparticles featuring heterogeneous interfaces. The method utilizes a post-thermal-treatment ice-bath coating process, which effectively preserves the original morphological structure of nanoparticles while achieving successful PPy encapsulation. The PPy coating significantly enhances the material's dielectric constant, thereby improving impedance matching and conductive loss. And combined with the synergistic effect of interfacial polarization relaxation induced by heterogeneous interfaces, the composite achieves exceptional EMWA performance. At a filler loading of 30 wt%, C-CoFe/C@PPy exhibits an effective absorption bandwidth of 6.16 GHz at a thickness of 2.2 mm, and the minimum reflection loss can reach −28.10 dB at 1.8 mm. It is believed that this work will enrich the research on polymer-encapsulated PBAs-derived microwave absorbing materials with superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信