亲水竹粉增强纤维素复合泡沫与定制的氢键网络结构缓冲应用

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Xianxin Han , Yu Zhang , Binghao Zou , Hao Tong , Ajoy Kanti Mondal , Yehan Tao , Jinwen Hu , Jian Du , Chenglong Fu , Haisong Wang
{"title":"亲水竹粉增强纤维素复合泡沫与定制的氢键网络结构缓冲应用","authors":"Xianxin Han ,&nbsp;Yu Zhang ,&nbsp;Binghao Zou ,&nbsp;Hao Tong ,&nbsp;Ajoy Kanti Mondal ,&nbsp;Yehan Tao ,&nbsp;Jinwen Hu ,&nbsp;Jian Du ,&nbsp;Chenglong Fu ,&nbsp;Haisong Wang","doi":"10.1016/j.susmat.2025.e01690","DOIUrl":null,"url":null,"abstract":"<div><div>The structural collapse of all-biomass foams during hot-air drying severely limits their formability and mechanical integrity, hindering practical applications. Herein, we present a multiscale reinforcement strategy using cationically modified bamboo powder (CBP) as a structural and functional additive to cellulose-based foams. The CBP exhibits enhanced hydrophilicity and surface charge, enabling strong hydrogen bonding and dipole–ion interactions with cellulose fibers. These interactions facilitate the formation of a robust internal network, allowing air drying without significant shrinkage and markedly enhancing compressive strength. Density functional theory (DFT) calculations confirm that hydrogen bonding is the dominant non-covalent force stabilizing the CBP-cellulose matrix. Additionally, covalent crosslinking between citric acid and cellulose via esterification further reinforces the three-dimensional architecture of the foam. The optimized composite foam exhibits a 207 % improvement in compressive strength compared to pristine cellulose foam. To impart multifunctionality, an inorganic–organic surface encapsulation strategy is applied, achieving excellent hydrophobicity (water contact angle: 133.9°), self-extinguishing flame-retardancy, and biodegradability. Practical evaluations, including high-altitude drop tests and transport packaging simulations, confirm the suitability of foam for protective applications. This work offers a scalable and sustainable pathway for engineering high-performance biomass-based foams, advancing the development of eco-friendly alternatives for transport and packaging.</div><div>applications.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"46 ","pages":"Article e01690"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrophilic bamboo powder-reinforced cellulose composite foams with tailored hydrogen bonding network for structural cushioning applications\",\"authors\":\"Xianxin Han ,&nbsp;Yu Zhang ,&nbsp;Binghao Zou ,&nbsp;Hao Tong ,&nbsp;Ajoy Kanti Mondal ,&nbsp;Yehan Tao ,&nbsp;Jinwen Hu ,&nbsp;Jian Du ,&nbsp;Chenglong Fu ,&nbsp;Haisong Wang\",\"doi\":\"10.1016/j.susmat.2025.e01690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The structural collapse of all-biomass foams during hot-air drying severely limits their formability and mechanical integrity, hindering practical applications. Herein, we present a multiscale reinforcement strategy using cationically modified bamboo powder (CBP) as a structural and functional additive to cellulose-based foams. The CBP exhibits enhanced hydrophilicity and surface charge, enabling strong hydrogen bonding and dipole–ion interactions with cellulose fibers. These interactions facilitate the formation of a robust internal network, allowing air drying without significant shrinkage and markedly enhancing compressive strength. Density functional theory (DFT) calculations confirm that hydrogen bonding is the dominant non-covalent force stabilizing the CBP-cellulose matrix. Additionally, covalent crosslinking between citric acid and cellulose via esterification further reinforces the three-dimensional architecture of the foam. The optimized composite foam exhibits a 207 % improvement in compressive strength compared to pristine cellulose foam. To impart multifunctionality, an inorganic–organic surface encapsulation strategy is applied, achieving excellent hydrophobicity (water contact angle: 133.9°), self-extinguishing flame-retardancy, and biodegradability. Practical evaluations, including high-altitude drop tests and transport packaging simulations, confirm the suitability of foam for protective applications. This work offers a scalable and sustainable pathway for engineering high-performance biomass-based foams, advancing the development of eco-friendly alternatives for transport and packaging.</div><div>applications.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"46 \",\"pages\":\"Article e01690\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725004580\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725004580","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在热风干燥过程中,全生物质泡沫的结构崩塌严重限制了其成型性和机械完整性,阻碍了其实际应用。在此,我们提出了一种多尺度增强策略,使用阳离子改性竹粉(CBP)作为纤维素基泡沫的结构和功能添加剂。CBP表现出增强的亲水性和表面电荷,能够与纤维素纤维形成强氢键和偶极子离子相互作用。这些相互作用促进了一个强大的内部网络的形成,使空气干燥没有显著的收缩和显著提高抗压强度。密度泛函理论(DFT)计算证实,氢键是稳定cbp -纤维素基质的主要非共价力。此外,柠檬酸和纤维素之间的共价交联通过酯化进一步加强了泡沫的三维结构。与原始纤维素泡沫相比,优化后的复合泡沫抗压强度提高了207%。为了实现多功能性,采用了无机-有机表面封装策略,实现了优异的疏水性(水接触角:133.9°)、自熄阻燃性和生物降解性。实际评估,包括高空跌落测试和运输包装模拟,证实了泡沫用于保护应用的适用性。这项工作为设计高性能生物质泡沫材料提供了可扩展和可持续的途径,促进了运输和包装应用中环保替代品的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrophilic bamboo powder-reinforced cellulose composite foams with tailored hydrogen bonding network for structural cushioning applications
The structural collapse of all-biomass foams during hot-air drying severely limits their formability and mechanical integrity, hindering practical applications. Herein, we present a multiscale reinforcement strategy using cationically modified bamboo powder (CBP) as a structural and functional additive to cellulose-based foams. The CBP exhibits enhanced hydrophilicity and surface charge, enabling strong hydrogen bonding and dipole–ion interactions with cellulose fibers. These interactions facilitate the formation of a robust internal network, allowing air drying without significant shrinkage and markedly enhancing compressive strength. Density functional theory (DFT) calculations confirm that hydrogen bonding is the dominant non-covalent force stabilizing the CBP-cellulose matrix. Additionally, covalent crosslinking between citric acid and cellulose via esterification further reinforces the three-dimensional architecture of the foam. The optimized composite foam exhibits a 207 % improvement in compressive strength compared to pristine cellulose foam. To impart multifunctionality, an inorganic–organic surface encapsulation strategy is applied, achieving excellent hydrophobicity (water contact angle: 133.9°), self-extinguishing flame-retardancy, and biodegradability. Practical evaluations, including high-altitude drop tests and transport packaging simulations, confirm the suitability of foam for protective applications. This work offers a scalable and sustainable pathway for engineering high-performance biomass-based foams, advancing the development of eco-friendly alternatives for transport and packaging.
applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信