芝麻(Sesamum indicum L.)育种性状基因及qtl发现综述

Q3 Agricultural and Biological Sciences
Desawi Hdru Teklu , Ahmed A. Abbas , Jun You , Linhai Wang
{"title":"芝麻(Sesamum indicum L.)育种性状基因及qtl发现综述","authors":"Desawi Hdru Teklu ,&nbsp;Ahmed A. Abbas ,&nbsp;Jun You ,&nbsp;Linhai Wang","doi":"10.1016/j.ocsci.2025.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>Sesame is a multi-purpose high-value oilseed crop, which can beused in the food, feed, and cosmetics applications. The low yield of sesame is due to the lack of high-yielding and locally adapted varieties, which have the susceptibility to capsule shattering and biotic and abiotic stresses. The breeding gains in sesame are low and stagnant compared to other oilseed crops such as canola, groundnut and sunflower. Breeding for enhanced yield-related, oil quantity and quality, biotic and abiotic stresses tolerant varieties is vital to the adaptation of the climate change. Several genes and quantitative trait loci (QTLs) related to yield-related, oil quantity and quality, biotic and abiotic stresses tolerant have been identified through modern plant breeding tools in sesame. The depth understanding of the genetic basis, molecular mechanisms and regulatory genes involved in yield-related, oil quantity and quality, biotic and abiotic stresses tolerant in sesame is important for the improvement of sesame breeding programs. This article reviews and documents these achievements will provide fundamental data and references for practical applications of sesam research.</div></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":"10 3","pages":"Pages 240-258"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genes and QTLs discovery for sesame (Sesamum indicum L.) breeding traits: A review\",\"authors\":\"Desawi Hdru Teklu ,&nbsp;Ahmed A. Abbas ,&nbsp;Jun You ,&nbsp;Linhai Wang\",\"doi\":\"10.1016/j.ocsci.2025.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sesame is a multi-purpose high-value oilseed crop, which can beused in the food, feed, and cosmetics applications. The low yield of sesame is due to the lack of high-yielding and locally adapted varieties, which have the susceptibility to capsule shattering and biotic and abiotic stresses. The breeding gains in sesame are low and stagnant compared to other oilseed crops such as canola, groundnut and sunflower. Breeding for enhanced yield-related, oil quantity and quality, biotic and abiotic stresses tolerant varieties is vital to the adaptation of the climate change. Several genes and quantitative trait loci (QTLs) related to yield-related, oil quantity and quality, biotic and abiotic stresses tolerant have been identified through modern plant breeding tools in sesame. The depth understanding of the genetic basis, molecular mechanisms and regulatory genes involved in yield-related, oil quantity and quality, biotic and abiotic stresses tolerant in sesame is important for the improvement of sesame breeding programs. This article reviews and documents these achievements will provide fundamental data and references for practical applications of sesam research.</div></div>\",\"PeriodicalId\":34095,\"journal\":{\"name\":\"Oil Crop Science\",\"volume\":\"10 3\",\"pages\":\"Pages 240-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil Crop Science\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096242825000363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil Crop Science","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096242825000363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

芝麻是一种多用途、高价值的油料作物,可用于食品、饲料、化妆品等领域。芝麻的低产量是由于缺乏高产和地方适应的品种,这些品种对蒴果破碎和生物和非生物胁迫敏感。与油菜籽、花生和向日葵等其他油料作物相比,芝麻的育种收益低且停滞不前。培育与产量相关、油的数量和质量、生物和非生物胁迫耐受性增强的品种对适应气候变化至关重要。利用现代植物育种工具,已经鉴定出与芝麻产量相关、油脂数量和品质、生物和非生物胁迫耐受性相关的几个基因和数量性状位点(qtl)。深入了解芝麻产量相关、油脂数量和品质、生物和非生物胁迫耐受性的遗传基础、分子机制和调控基因,对改进芝麻育种计划具有重要意义。本文对这些研究成果进行综述和整理,为芝麻的实际应用研究提供基础数据和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genes and QTLs discovery for sesame (Sesamum indicum L.) breeding traits: A review
Sesame is a multi-purpose high-value oilseed crop, which can beused in the food, feed, and cosmetics applications. The low yield of sesame is due to the lack of high-yielding and locally adapted varieties, which have the susceptibility to capsule shattering and biotic and abiotic stresses. The breeding gains in sesame are low and stagnant compared to other oilseed crops such as canola, groundnut and sunflower. Breeding for enhanced yield-related, oil quantity and quality, biotic and abiotic stresses tolerant varieties is vital to the adaptation of the climate change. Several genes and quantitative trait loci (QTLs) related to yield-related, oil quantity and quality, biotic and abiotic stresses tolerant have been identified through modern plant breeding tools in sesame. The depth understanding of the genetic basis, molecular mechanisms and regulatory genes involved in yield-related, oil quantity and quality, biotic and abiotic stresses tolerant in sesame is important for the improvement of sesame breeding programs. This article reviews and documents these achievements will provide fundamental data and references for practical applications of sesam research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oil Crop Science
Oil Crop Science Food Science, Plant Science, Agronomy and Crop Science
CiteScore
3.40
自引率
0.00%
发文量
20
审稿时长
74 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信