对称截断弗洛伊德多项式

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Edmundo J. Huertas , Alberto Lastra , Francisco Marcellán , Víctor Soto-Larrosa
{"title":"对称截断弗洛伊德多项式","authors":"Edmundo J. Huertas ,&nbsp;Alberto Lastra ,&nbsp;Francisco Marcellán ,&nbsp;Víctor Soto-Larrosa","doi":"10.1016/j.cam.2025.117080","DOIUrl":null,"url":null,"abstract":"<div><div>We define the family of symmetric truncated Freud polynomials <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, orthogonal with respect to the linear functional <span><math><mi>u</mi></math></span> defined by <span><span><span><math><mrow><mrow><mo>〈</mo><mi>u</mi><mo>,</mo><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>〉</mo></mrow><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mi>z</mi></mrow><mrow><mi>z</mi></mrow></msubsup><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>&gt;</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>The semiclassical character of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> as polynomials of class 4 is stated. As a consequence, several properties of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> concerning the coefficients <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in the three-term recurrence relation they satisfy, as well as the moments and the Stieltjes function of <span><math><mi>u</mi></math></span>, are studied. Ladder operators associated with such a linear functional and the holonomic equation satisfied by the polynomials <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> are deduced. Additionally, an electrostatic interpretation of their zeros and their dynamics with respect to the parameter <span><math><mi>z</mi></math></span> are provided. We also consider a rescaled orthonormal sequence <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> supported on the fixed interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, with respect to the weight <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></msup></math></span>, and establish a relative outer asymptotic relation with the Chebyshev polynomials of the second kind in the complex domain.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117080"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric truncated Freud polynomials\",\"authors\":\"Edmundo J. Huertas ,&nbsp;Alberto Lastra ,&nbsp;Francisco Marcellán ,&nbsp;Víctor Soto-Larrosa\",\"doi\":\"10.1016/j.cam.2025.117080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We define the family of symmetric truncated Freud polynomials <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, orthogonal with respect to the linear functional <span><math><mi>u</mi></math></span> defined by <span><span><span><math><mrow><mrow><mo>〈</mo><mi>u</mi><mo>,</mo><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>〉</mo></mrow><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mi>z</mi></mrow><mrow><mi>z</mi></mrow></msubsup><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>&gt;</mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>The semiclassical character of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> as polynomials of class 4 is stated. As a consequence, several properties of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> concerning the coefficients <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in the three-term recurrence relation they satisfy, as well as the moments and the Stieltjes function of <span><math><mi>u</mi></math></span>, are studied. Ladder operators associated with such a linear functional and the holonomic equation satisfied by the polynomials <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> are deduced. Additionally, an electrostatic interpretation of their zeros and their dynamics with respect to the parameter <span><math><mi>z</mi></math></span> are provided. We also consider a rescaled orthonormal sequence <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> supported on the fixed interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, with respect to the weight <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></msup></math></span>, and establish a relative outer asymptotic relation with the Chebyshev polynomials of the second kind in the complex domain.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117080\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725005941\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725005941","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了对称截断弗洛伊德多项式Pn(x;z)族,它与线性泛函u正交,p(x) > =∫- zzp(x)e - x4dx,p∈p,z>0。给出了Pn(x;z)作为第4类多项式的半经典性质。因此,研究了Pn(x;z)在其满足的三项递推关系中与系数γn(z)有关的若干性质,以及u的矩和Stieltjes函数。推导了与这种线性泛函相关的阶梯算子和多项式Pn(x;z)所满足的完整方程。此外,提供了它们的零点和它们相对于参数z的动力学的静电解释。我们还考虑了在固定区间[−1,1]上支持的一个重标化的标准正交序列pn(x;z),相对于权值e−z4x4,在复域上与第二类Chebyshev多项式建立了相对外渐近关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric truncated Freud polynomials
We define the family of symmetric truncated Freud polynomials Pn(x;z), orthogonal with respect to the linear functional u defined by u,p(x)=zzp(x)ex4dx,pP,z>0.The semiclassical character of Pn(x;z) as polynomials of class 4 is stated. As a consequence, several properties of Pn(x;z) concerning the coefficients γn(z) in the three-term recurrence relation they satisfy, as well as the moments and the Stieltjes function of u, are studied. Ladder operators associated with such a linear functional and the holonomic equation satisfied by the polynomials Pn(x;z) are deduced. Additionally, an electrostatic interpretation of their zeros and their dynamics with respect to the parameter z are provided. We also consider a rescaled orthonormal sequence pn(x;z) supported on the fixed interval [1,1], with respect to the weight ez4x4, and establish a relative outer asymptotic relation with the Chebyshev polynomials of the second kind in the complex domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信