Edmundo J. Huertas , Alberto Lastra , Francisco Marcellán , Víctor Soto-Larrosa
{"title":"对称截断弗洛伊德多项式","authors":"Edmundo J. Huertas , Alberto Lastra , Francisco Marcellán , Víctor Soto-Larrosa","doi":"10.1016/j.cam.2025.117080","DOIUrl":null,"url":null,"abstract":"<div><div>We define the family of symmetric truncated Freud polynomials <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, orthogonal with respect to the linear functional <span><math><mi>u</mi></math></span> defined by <span><span><span><math><mrow><mrow><mo>〈</mo><mi>u</mi><mo>,</mo><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>〉</mo></mrow><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mi>z</mi></mrow><mrow><mi>z</mi></mrow></msubsup><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>></mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>The semiclassical character of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> as polynomials of class 4 is stated. As a consequence, several properties of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> concerning the coefficients <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in the three-term recurrence relation they satisfy, as well as the moments and the Stieltjes function of <span><math><mi>u</mi></math></span>, are studied. Ladder operators associated with such a linear functional and the holonomic equation satisfied by the polynomials <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> are deduced. Additionally, an electrostatic interpretation of their zeros and their dynamics with respect to the parameter <span><math><mi>z</mi></math></span> are provided. We also consider a rescaled orthonormal sequence <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> supported on the fixed interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, with respect to the weight <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></msup></math></span>, and establish a relative outer asymptotic relation with the Chebyshev polynomials of the second kind in the complex domain.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"476 ","pages":"Article 117080"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric truncated Freud polynomials\",\"authors\":\"Edmundo J. Huertas , Alberto Lastra , Francisco Marcellán , Víctor Soto-Larrosa\",\"doi\":\"10.1016/j.cam.2025.117080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We define the family of symmetric truncated Freud polynomials <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>, orthogonal with respect to the linear functional <span><math><mi>u</mi></math></span> defined by <span><span><span><math><mrow><mrow><mo>〈</mo><mi>u</mi><mo>,</mo><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>〉</mo></mrow><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mo>−</mo><mi>z</mi></mrow><mrow><mi>z</mi></mrow></msubsup><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></msup><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace><mi>p</mi><mo>∈</mo><mi>P</mi><mo>,</mo><mspace></mspace><mi>z</mi><mo>></mo><mn>0</mn><mo>.</mo></mrow></math></span></span></span>The semiclassical character of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> as polynomials of class 4 is stated. As a consequence, several properties of <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> concerning the coefficients <span><math><mrow><msub><mrow><mi>γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in the three-term recurrence relation they satisfy, as well as the moments and the Stieltjes function of <span><math><mi>u</mi></math></span>, are studied. Ladder operators associated with such a linear functional and the holonomic equation satisfied by the polynomials <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> are deduced. Additionally, an electrostatic interpretation of their zeros and their dynamics with respect to the parameter <span><math><mi>z</mi></math></span> are provided. We also consider a rescaled orthonormal sequence <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>;</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> supported on the fixed interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, with respect to the weight <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></msup></math></span>, and establish a relative outer asymptotic relation with the Chebyshev polynomials of the second kind in the complex domain.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"476 \",\"pages\":\"Article 117080\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725005941\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725005941","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We define the family of symmetric truncated Freud polynomials , orthogonal with respect to the linear functional defined by The semiclassical character of as polynomials of class 4 is stated. As a consequence, several properties of concerning the coefficients in the three-term recurrence relation they satisfy, as well as the moments and the Stieltjes function of , are studied. Ladder operators associated with such a linear functional and the holonomic equation satisfied by the polynomials are deduced. Additionally, an electrostatic interpretation of their zeros and their dynamics with respect to the parameter are provided. We also consider a rescaled orthonormal sequence supported on the fixed interval , with respect to the weight , and establish a relative outer asymptotic relation with the Chebyshev polynomials of the second kind in the complex domain.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.