Alisher Alibekov , Yingkar Bahetnur , Kadisha Yessenbayeva , Nassiba Baimatova , Woojin Lee
{"title":"中亚城市环境挥发性有机化合物(VOCs)的严重健康风险:来源归因和概率风险评估","authors":"Alisher Alibekov , Yingkar Bahetnur , Kadisha Yessenbayeva , Nassiba Baimatova , Woojin Lee","doi":"10.1016/j.aeaoa.2025.100378","DOIUrl":null,"url":null,"abstract":"<div><div>Volatile organic compounds (VOCs) significantly contribute to ambient air pollution and pose serious health threats, particularly in rapidly urbanizing regions. This study comprehensively assessed ambient VOC concentrations, identified potential emission sources, and conducted a stochastic human health risk assessment in Almaty, Kazakhstan – a metropolitan Central Asian city characterized by intense traffic, extensive coal combustion, and frequent temperature inversions. Ambient air samples were collected seasonally at multiple elevation points across the city and analyzed for 23 VOC species. Their concentrations were notably elevated during the heating season, especially in the lower city, with benzene, toluene, ethylbenzene, xylenes (BTEX), and naphthalene exhibiting alarming levels compared to other urban settings worldwide. Principal component and BTEX ratio analyses identified coal combustion, vehicle emissions, and industrial activities as the primary VOC sources, with persistent impacts observed even during non-heating seasons due to pollutant resuspension and revolatilization. The stochastic health risk assessment revealed median non-carcinogenic hazard indices generally within acceptable limits but highlighted substantial exceedances (HI > 1) at the 95th percentile, driven mainly by benzene and naphthalene. Carcinogenic risks consistently exceeded acceptable thresholds (10<sup>−6</sup>), with benzene being the predominant contributor, which raised urgent public health concerns. Almaty's population faces significantly higher cancer risks than North American and European cities, highlighting the critical need for targeted regulatory measures to mitigate VOC emissions and protect public health.</div></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"28 ","pages":"Article 100378"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Severe health risks from ambient volatile organic compounds (VOCs) in a Central Asian city: Source attribution and probabilistic risk assessment\",\"authors\":\"Alisher Alibekov , Yingkar Bahetnur , Kadisha Yessenbayeva , Nassiba Baimatova , Woojin Lee\",\"doi\":\"10.1016/j.aeaoa.2025.100378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Volatile organic compounds (VOCs) significantly contribute to ambient air pollution and pose serious health threats, particularly in rapidly urbanizing regions. This study comprehensively assessed ambient VOC concentrations, identified potential emission sources, and conducted a stochastic human health risk assessment in Almaty, Kazakhstan – a metropolitan Central Asian city characterized by intense traffic, extensive coal combustion, and frequent temperature inversions. Ambient air samples were collected seasonally at multiple elevation points across the city and analyzed for 23 VOC species. Their concentrations were notably elevated during the heating season, especially in the lower city, with benzene, toluene, ethylbenzene, xylenes (BTEX), and naphthalene exhibiting alarming levels compared to other urban settings worldwide. Principal component and BTEX ratio analyses identified coal combustion, vehicle emissions, and industrial activities as the primary VOC sources, with persistent impacts observed even during non-heating seasons due to pollutant resuspension and revolatilization. The stochastic health risk assessment revealed median non-carcinogenic hazard indices generally within acceptable limits but highlighted substantial exceedances (HI > 1) at the 95th percentile, driven mainly by benzene and naphthalene. Carcinogenic risks consistently exceeded acceptable thresholds (10<sup>−6</sup>), with benzene being the predominant contributor, which raised urgent public health concerns. Almaty's population faces significantly higher cancer risks than North American and European cities, highlighting the critical need for targeted regulatory measures to mitigate VOC emissions and protect public health.</div></div>\",\"PeriodicalId\":37150,\"journal\":{\"name\":\"Atmospheric Environment: X\",\"volume\":\"28 \",\"pages\":\"Article 100378\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590162125000681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162125000681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Severe health risks from ambient volatile organic compounds (VOCs) in a Central Asian city: Source attribution and probabilistic risk assessment
Volatile organic compounds (VOCs) significantly contribute to ambient air pollution and pose serious health threats, particularly in rapidly urbanizing regions. This study comprehensively assessed ambient VOC concentrations, identified potential emission sources, and conducted a stochastic human health risk assessment in Almaty, Kazakhstan – a metropolitan Central Asian city characterized by intense traffic, extensive coal combustion, and frequent temperature inversions. Ambient air samples were collected seasonally at multiple elevation points across the city and analyzed for 23 VOC species. Their concentrations were notably elevated during the heating season, especially in the lower city, with benzene, toluene, ethylbenzene, xylenes (BTEX), and naphthalene exhibiting alarming levels compared to other urban settings worldwide. Principal component and BTEX ratio analyses identified coal combustion, vehicle emissions, and industrial activities as the primary VOC sources, with persistent impacts observed even during non-heating seasons due to pollutant resuspension and revolatilization. The stochastic health risk assessment revealed median non-carcinogenic hazard indices generally within acceptable limits but highlighted substantial exceedances (HI > 1) at the 95th percentile, driven mainly by benzene and naphthalene. Carcinogenic risks consistently exceeded acceptable thresholds (10−6), with benzene being the predominant contributor, which raised urgent public health concerns. Almaty's population faces significantly higher cancer risks than North American and European cities, highlighting the critical need for targeted regulatory measures to mitigate VOC emissions and protect public health.