复杂环境下不对称行走时间的lsamvy行走

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Ting Liu, Guohua Li, Hong Zhang, Xiangwen Huang, Xiaoxuan Wang, Xiaoyu Tang, Zeyu Tu
{"title":"复杂环境下不对称行走时间的lsamvy行走","authors":"Ting Liu,&nbsp;Guohua Li,&nbsp;Hong Zhang,&nbsp;Xiangwen Huang,&nbsp;Xiaoxuan Wang,&nbsp;Xiaoyu Tang,&nbsp;Zeyu Tu","doi":"10.1016/j.physa.2025.130999","DOIUrl":null,"url":null,"abstract":"<div><div>The Lévy walk serves as an important model for superdiffusion and holds significant importance in biological motion research. This study addresses the anisotropic deviations observed in practical biological movements by proposing an asymmetric walking-time Lévy walk model based on diffusion direction, while systematically analyzing its dynamical behavior under linear potential fields. The spatiotemporal coupling challenge is resolved through the Hermite polynomial approximation method, enabling precise computation of key statistical quantities. Research findings demonstrate that in the absence of potential fields, both exponential and power-law distributed walking times exhibit ballistic diffusion, with the latter showing variance scaling affected by asymmetry <span><math><mrow><mtext>Var</mtext><mrow><mo>[</mo><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>]</mo></mrow><mo>∝</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn><mo>−</mo><mrow><mo>|</mo><mi>α</mi><mo>|</mo></mrow></mrow></msup></mrow></math></span> (where <span><math><mrow><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>l</mi></mrow></msub></mrow></math></span> represents the difference in power-law exponents of asymmetric walking-time distributions), where the dynamics are governed collectively by initial velocity <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, jumping probability <span><math><mi>γ</mi></math></span>, and asymmetric time parameters. When subjected to a linear potential field, exponential walking times maintain the <span><math><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> scaling of ballistic diffusion, while power-law distributions enhance to superdiffusive behavior with <span><math><mrow><mrow><mo>〈</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>〉</mo></mrow><mo>∝</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, though the dominant variance term depends on <span><math><mrow><mo>min</mo><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, with the dynamics jointly controlled by acceleration and asymmetric time parameters. This research provides theoretical foundations for designing random walk models with specific transport properties, offering substantial value for both biological motion mechanism studies and engineering applications.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"679 ","pages":"Article 130999"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lévy walk with asymmetric walking times in complex environments\",\"authors\":\"Ting Liu,&nbsp;Guohua Li,&nbsp;Hong Zhang,&nbsp;Xiangwen Huang,&nbsp;Xiaoxuan Wang,&nbsp;Xiaoyu Tang,&nbsp;Zeyu Tu\",\"doi\":\"10.1016/j.physa.2025.130999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Lévy walk serves as an important model for superdiffusion and holds significant importance in biological motion research. This study addresses the anisotropic deviations observed in practical biological movements by proposing an asymmetric walking-time Lévy walk model based on diffusion direction, while systematically analyzing its dynamical behavior under linear potential fields. The spatiotemporal coupling challenge is resolved through the Hermite polynomial approximation method, enabling precise computation of key statistical quantities. Research findings demonstrate that in the absence of potential fields, both exponential and power-law distributed walking times exhibit ballistic diffusion, with the latter showing variance scaling affected by asymmetry <span><math><mrow><mtext>Var</mtext><mrow><mo>[</mo><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>]</mo></mrow><mo>∝</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn><mo>−</mo><mrow><mo>|</mo><mi>α</mi><mo>|</mo></mrow></mrow></msup></mrow></math></span> (where <span><math><mrow><mi>α</mi><mo>=</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>−</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>l</mi></mrow></msub></mrow></math></span> represents the difference in power-law exponents of asymmetric walking-time distributions), where the dynamics are governed collectively by initial velocity <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, jumping probability <span><math><mi>γ</mi></math></span>, and asymmetric time parameters. When subjected to a linear potential field, exponential walking times maintain the <span><math><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> scaling of ballistic diffusion, while power-law distributions enhance to superdiffusive behavior with <span><math><mrow><mrow><mo>〈</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>〉</mo></mrow><mo>∝</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, though the dominant variance term depends on <span><math><mrow><mo>min</mo><mrow><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, with the dynamics jointly controlled by acceleration and asymmetric time parameters. This research provides theoretical foundations for designing random walk models with specific transport properties, offering substantial value for both biological motion mechanism studies and engineering applications.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"679 \",\"pages\":\"Article 130999\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037843712500651X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037843712500651X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

lsamvy walk是一种重要的超扩散模型,在生物运动研究中具有重要意义。针对实际生物运动中观察到的各向异性偏差,提出了一种基于扩散方向的非对称行走-时间lsamvy行走模型,并系统分析了其在线性势场下的动力学行为。通过Hermite多项式近似方法解决了时空耦合挑战,实现了关键统计量的精确计算。研究结果表明,在不存在势场的情况下,指数分布的行走时间和幂律分布的行走时间都表现为弹道扩散,后者表现为方差尺度化,受不对称Var[x(t)]∝t2−|α|的影响(其中α=αr−αl表示不对称行走时间分布幂律指数的差异),其中动力学受初速度v0、跳跃概率γ和不对称时间参数的共同控制。在线性势场作用下,指数行走时间保持弹道扩散的t2标度,幂律分布增强为< x2(t) >∝t4的超扩散行为,但主导方差项依赖于min(αr,αl),动力学由加速度和非对称时间参数共同控制。该研究为设计具有特定输运特性的随机游走模型提供了理论基础,对生物运动机理研究和工程应用具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lévy walk with asymmetric walking times in complex environments
The Lévy walk serves as an important model for superdiffusion and holds significant importance in biological motion research. This study addresses the anisotropic deviations observed in practical biological movements by proposing an asymmetric walking-time Lévy walk model based on diffusion direction, while systematically analyzing its dynamical behavior under linear potential fields. The spatiotemporal coupling challenge is resolved through the Hermite polynomial approximation method, enabling precise computation of key statistical quantities. Research findings demonstrate that in the absence of potential fields, both exponential and power-law distributed walking times exhibit ballistic diffusion, with the latter showing variance scaling affected by asymmetry Var[x(t)]t2|α| (where α=αrαl represents the difference in power-law exponents of asymmetric walking-time distributions), where the dynamics are governed collectively by initial velocity v0, jumping probability γ, and asymmetric time parameters. When subjected to a linear potential field, exponential walking times maintain the t2 scaling of ballistic diffusion, while power-law distributions enhance to superdiffusive behavior with x2(t)t4, though the dominant variance term depends on min(αr,αl), with the dynamics jointly controlled by acceleration and asymmetric time parameters. This research provides theoretical foundations for designing random walk models with specific transport properties, offering substantial value for both biological motion mechanism studies and engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信