{"title":"揭示人类-人工智能混合绩效的动态:实证研究的定性荟萃分析","authors":"Dóra Göndöcs , Szabolcs Horváth , Viktor Dörfler","doi":"10.1016/j.ijhcs.2025.103622","DOIUrl":null,"url":null,"abstract":"<div><div>Human-AI collaboration is an increasingly important area of research as AI systems are integrated into everyday workflows and moving beyond mere automation and augmentation to more collaborative roles. However, existing research often overlooks the dynamics and performance aspects of this interaction. Our study addresses this gap through a review of empirical AI studies from 2018–2024, focusing on the key factors influencing human-AI collaboration outcomes within the spectrum of Human-Centered Artificial Intelligence (HCAI).</div><div>We identify 24 critical performance factors that influence hybrid performance, grouped into four categories using thematic analysis. Then, we uncover and analyze the complex, non-linear interdependencies between these factors. We present these relationships in a factor dependency graph, highlighting the most influential nodes.</div><div>The graph and specific factor interactions supported by the papers reveal a quite complex web, an interconnectedness of factors. As opposed to being an easy-to-predict combination of inputs, human-AI collaboration in a given context likely leads to a dynamic, evolving system with often non-linear effects on its hybrid performance. Our findings and the previous research on automation technologies suggest that the application of AI tools in collaborative scenarios would benefit from a comprehensive performance framework. Our study intends to contribute to this future line of research with this initial framework.</div></div>","PeriodicalId":54955,"journal":{"name":"International Journal of Human-Computer Studies","volume":"205 ","pages":"Article 103622"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the dynamics of human-AI hybrid performance: A qualitative meta-analysis of empirical studies\",\"authors\":\"Dóra Göndöcs , Szabolcs Horváth , Viktor Dörfler\",\"doi\":\"10.1016/j.ijhcs.2025.103622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human-AI collaboration is an increasingly important area of research as AI systems are integrated into everyday workflows and moving beyond mere automation and augmentation to more collaborative roles. However, existing research often overlooks the dynamics and performance aspects of this interaction. Our study addresses this gap through a review of empirical AI studies from 2018–2024, focusing on the key factors influencing human-AI collaboration outcomes within the spectrum of Human-Centered Artificial Intelligence (HCAI).</div><div>We identify 24 critical performance factors that influence hybrid performance, grouped into four categories using thematic analysis. Then, we uncover and analyze the complex, non-linear interdependencies between these factors. We present these relationships in a factor dependency graph, highlighting the most influential nodes.</div><div>The graph and specific factor interactions supported by the papers reveal a quite complex web, an interconnectedness of factors. As opposed to being an easy-to-predict combination of inputs, human-AI collaboration in a given context likely leads to a dynamic, evolving system with often non-linear effects on its hybrid performance. Our findings and the previous research on automation technologies suggest that the application of AI tools in collaborative scenarios would benefit from a comprehensive performance framework. Our study intends to contribute to this future line of research with this initial framework.</div></div>\",\"PeriodicalId\":54955,\"journal\":{\"name\":\"International Journal of Human-Computer Studies\",\"volume\":\"205 \",\"pages\":\"Article 103622\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Human-Computer Studies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107158192500179X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Human-Computer Studies","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107158192500179X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Uncovering the dynamics of human-AI hybrid performance: A qualitative meta-analysis of empirical studies
Human-AI collaboration is an increasingly important area of research as AI systems are integrated into everyday workflows and moving beyond mere automation and augmentation to more collaborative roles. However, existing research often overlooks the dynamics and performance aspects of this interaction. Our study addresses this gap through a review of empirical AI studies from 2018–2024, focusing on the key factors influencing human-AI collaboration outcomes within the spectrum of Human-Centered Artificial Intelligence (HCAI).
We identify 24 critical performance factors that influence hybrid performance, grouped into four categories using thematic analysis. Then, we uncover and analyze the complex, non-linear interdependencies between these factors. We present these relationships in a factor dependency graph, highlighting the most influential nodes.
The graph and specific factor interactions supported by the papers reveal a quite complex web, an interconnectedness of factors. As opposed to being an easy-to-predict combination of inputs, human-AI collaboration in a given context likely leads to a dynamic, evolving system with often non-linear effects on its hybrid performance. Our findings and the previous research on automation technologies suggest that the application of AI tools in collaborative scenarios would benefit from a comprehensive performance framework. Our study intends to contribute to this future line of research with this initial framework.
期刊介绍:
The International Journal of Human-Computer Studies publishes original research over the whole spectrum of work relevant to the theory and practice of innovative interactive systems. The journal is inherently interdisciplinary, covering research in computing, artificial intelligence, psychology, linguistics, communication, design, engineering, and social organization, which is relevant to the design, analysis, evaluation and application of innovative interactive systems. Papers at the boundaries of these disciplines are especially welcome, as it is our view that interdisciplinary approaches are needed for producing theoretical insights in this complex area and for effective deployment of innovative technologies in concrete user communities.
Research areas relevant to the journal include, but are not limited to:
• Innovative interaction techniques
• Multimodal interaction
• Speech interaction
• Graphic interaction
• Natural language interaction
• Interaction in mobile and embedded systems
• Interface design and evaluation methodologies
• Design and evaluation of innovative interactive systems
• User interface prototyping and management systems
• Ubiquitous computing
• Wearable computers
• Pervasive computing
• Affective computing
• Empirical studies of user behaviour
• Empirical studies of programming and software engineering
• Computer supported cooperative work
• Computer mediated communication
• Virtual reality
• Mixed and augmented Reality
• Intelligent user interfaces
• Presence
...