隐私保护下的联邦深度嵌入式集群

IF 6.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiao Xu , Hong Liao , Xu Yang
{"title":"隐私保护下的联邦深度嵌入式集群","authors":"Xiao Xu ,&nbsp;Hong Liao ,&nbsp;Xu Yang","doi":"10.1016/j.asoc.2025.113963","DOIUrl":null,"url":null,"abstract":"<div><div>Deep clustering, a prominent research focus in data mining, utilizes deeply embedded features to reveal the intrinsic statistical structure of data. However, existing deep clustering models rely on centralized datasets, which are impractical in scenarios with data silos and privacy constraints, leading to degraded clustering performance. Considering the privacy protection characteristics of federated learning, this paper incorporates the idea of federated learning into deep clustering, and proposes a federated deep embedding clustering (FDEC) model under privacy protection. FDEC follows a universal client-server structure, coordinating training between clients through a central server to obtain a unified central model. The server updates the global deep embedding and cluster centers based on a hybrid federated averaging strategy, while each client conducts two-stage deep clustering on local data without sharing raw data. To enhance robustness under non-independent and identically distributed (non-IID) conditions, the hybrid strategy improves parameter aggregation effectiveness. Experimental results on both IID and non-IID datasets demonstrate that FDEC is more robust and consistently outperforms centralized deep clustering methods.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"185 ","pages":"Article 113963"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated deep embedded clustering under privacy protection\",\"authors\":\"Xiao Xu ,&nbsp;Hong Liao ,&nbsp;Xu Yang\",\"doi\":\"10.1016/j.asoc.2025.113963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep clustering, a prominent research focus in data mining, utilizes deeply embedded features to reveal the intrinsic statistical structure of data. However, existing deep clustering models rely on centralized datasets, which are impractical in scenarios with data silos and privacy constraints, leading to degraded clustering performance. Considering the privacy protection characteristics of federated learning, this paper incorporates the idea of federated learning into deep clustering, and proposes a federated deep embedding clustering (FDEC) model under privacy protection. FDEC follows a universal client-server structure, coordinating training between clients through a central server to obtain a unified central model. The server updates the global deep embedding and cluster centers based on a hybrid federated averaging strategy, while each client conducts two-stage deep clustering on local data without sharing raw data. To enhance robustness under non-independent and identically distributed (non-IID) conditions, the hybrid strategy improves parameter aggregation effectiveness. Experimental results on both IID and non-IID datasets demonstrate that FDEC is more robust and consistently outperforms centralized deep clustering methods.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"185 \",\"pages\":\"Article 113963\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625012761\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625012761","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度聚类利用深度嵌入特征揭示数据内在的统计结构,是数据挖掘领域的一个重要研究热点。然而,现有的深度聚类模型依赖于集中式数据集,这在具有数据孤岛和隐私约束的场景下是不切实际的,导致聚类性能下降。考虑到联邦学习的隐私保护特点,将联邦学习的思想引入到深度聚类中,提出了隐私保护下的联邦深度嵌入聚类(FDEC)模型。FDEC采用通用的客户-服务器结构,通过中心服务器协调客户之间的培训,获得统一的中心模型。服务器基于混合联邦平均策略更新全局深度嵌入和集群中心,而每个客户端在不共享原始数据的情况下对本地数据进行两阶段深度集群。为了增强非独立同分布(non-independent and同分布,non-IID)条件下的鲁棒性,混合策略提高了参数聚合的有效性。在IID和非IID数据集上的实验结果表明,FDEC具有更强的鲁棒性,并且始终优于集中式深度聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated deep embedded clustering under privacy protection
Deep clustering, a prominent research focus in data mining, utilizes deeply embedded features to reveal the intrinsic statistical structure of data. However, existing deep clustering models rely on centralized datasets, which are impractical in scenarios with data silos and privacy constraints, leading to degraded clustering performance. Considering the privacy protection characteristics of federated learning, this paper incorporates the idea of federated learning into deep clustering, and proposes a federated deep embedding clustering (FDEC) model under privacy protection. FDEC follows a universal client-server structure, coordinating training between clients through a central server to obtain a unified central model. The server updates the global deep embedding and cluster centers based on a hybrid federated averaging strategy, while each client conducts two-stage deep clustering on local data without sharing raw data. To enhance robustness under non-independent and identically distributed (non-IID) conditions, the hybrid strategy improves parameter aggregation effectiveness. Experimental results on both IID and non-IID datasets demonstrate that FDEC is more robust and consistently outperforms centralized deep clustering methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信