三维不可压缩Navier-Stokes方程的新的全局正则性结果

Q1 Mathematics
Abdelhafid Younsi
{"title":"三维不可压缩Navier-Stokes方程的新的全局正则性结果","authors":"Abdelhafid Younsi","doi":"10.1016/j.padiff.2025.101306","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we establish the global existence in time of strong solutions to the 3D incompressible Navier–Stokes system for small viscosity and large initial data. The obtained result is valid in bounded domains and in the whole space. This result provides valuable insights into significant open problems in both physics and mathematics.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"16 ","pages":"Article 101306"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New global regularity result for the 3D incompressible Navier–Stokes equations\",\"authors\":\"Abdelhafid Younsi\",\"doi\":\"10.1016/j.padiff.2025.101306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we establish the global existence in time of strong solutions to the 3D incompressible Navier–Stokes system for small viscosity and large initial data. The obtained result is valid in bounded domains and in the whole space. This result provides valuable insights into significant open problems in both physics and mathematics.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"16 \",\"pages\":\"Article 101306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125002323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了小粘度大初始数据下三维不可压缩Navier-Stokes系统强解的全局时间存在性。所得结果在有界域和整个空间内都是有效的。这一结果为物理学和数学中的重大开放问题提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New global regularity result for the 3D incompressible Navier–Stokes equations
In this paper we establish the global existence in time of strong solutions to the 3D incompressible Navier–Stokes system for small viscosity and large initial data. The obtained result is valid in bounded domains and in the whole space. This result provides valuable insights into significant open problems in both physics and mathematics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信