利用图神经摘要解决图增强大型语言模型中的信息瓶颈问题

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wooyoung Kim, Wooju Kim
{"title":"利用图神经摘要解决图增强大型语言模型中的信息瓶颈问题","authors":"Wooyoung Kim,&nbsp;Wooju Kim","doi":"10.1016/j.inffus.2025.103784","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the problem of information bottlenecks in graph-level prompting, where compressing all node embeddings into a single vector leads to significant structural information loss. We clarify and systematically analyze this challenge, and propose the Graph Neural Summarizer (GNS), a continuous prompting framework that generates multiple query-aware prompt vectors to better preserve graph structure and improve context relevance. Experiments on ExplaGraphs, SceneGraphs, and WebQSP show that GNS consistently improves performance over strong graph-level prompting baselines. These findings emphasize the importance of addressing information bottlenecks when integrating graph-structured data with large language models. Implementation details and source code are publicly available at <span><span>https://github.com/timothy-coshin/GraphNeuralSummarizer</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"127 ","pages":"Article 103784"},"PeriodicalIF":15.5000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing information bottlenecks in graph augmented large language models via graph neural summarization\",\"authors\":\"Wooyoung Kim,&nbsp;Wooju Kim\",\"doi\":\"10.1016/j.inffus.2025.103784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the problem of information bottlenecks in graph-level prompting, where compressing all node embeddings into a single vector leads to significant structural information loss. We clarify and systematically analyze this challenge, and propose the Graph Neural Summarizer (GNS), a continuous prompting framework that generates multiple query-aware prompt vectors to better preserve graph structure and improve context relevance. Experiments on ExplaGraphs, SceneGraphs, and WebQSP show that GNS consistently improves performance over strong graph-level prompting baselines. These findings emphasize the importance of addressing information bottlenecks when integrating graph-structured data with large language models. Implementation details and source code are publicly available at <span><span>https://github.com/timothy-coshin/GraphNeuralSummarizer</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"127 \",\"pages\":\"Article 103784\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253525008462\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525008462","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了图级提示中的信息瓶颈问题,其中将所有节点嵌入压缩到单个向量中会导致严重的结构信息丢失。我们澄清并系统地分析了这一挑战,并提出了图形神经摘要器(GNS),这是一个连续提示框架,可以生成多个查询感知提示向量,以更好地保留图结构并提高上下文相关性。在ExplaGraphs、SceneGraphs和WebQSP上的实验表明,GNS在强图级提示基线上持续提高性能。这些发现强调了在将图结构数据与大型语言模型集成时解决信息瓶颈的重要性。实现细节和源代码可在https://github.com/timothy-coshin/GraphNeuralSummarizer上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Addressing information bottlenecks in graph augmented large language models via graph neural summarization
This study investigates the problem of information bottlenecks in graph-level prompting, where compressing all node embeddings into a single vector leads to significant structural information loss. We clarify and systematically analyze this challenge, and propose the Graph Neural Summarizer (GNS), a continuous prompting framework that generates multiple query-aware prompt vectors to better preserve graph structure and improve context relevance. Experiments on ExplaGraphs, SceneGraphs, and WebQSP show that GNS consistently improves performance over strong graph-level prompting baselines. These findings emphasize the importance of addressing information bottlenecks when integrating graph-structured data with large language models. Implementation details and source code are publicly available at https://github.com/timothy-coshin/GraphNeuralSummarizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信