Ali Abdolali , Tyler J. Hesser , Aron Roland , Martha Schönau , David A. Honegger , Jane McKee Smith , Héloïse Michaud , Luca Centurioni
{"title":"推进多尺度波浪模拟:2022年大西洋飓风季节的全球和沿海应用","authors":"Ali Abdolali , Tyler J. Hesser , Aron Roland , Martha Schönau , David A. Honegger , Jane McKee Smith , Héloïse Michaud , Luca Centurioni","doi":"10.1016/j.ocemod.2025.102623","DOIUrl":null,"url":null,"abstract":"<div><div>Using the six-month hurricane season of 2022 as a case study and the spectral wave model WAVEWATCH III, this effort shows that wave parameters produced via a variable-resolution global mesh (5–30 km) agree with a diverse array of validating observational datasets at a level comparable to that of a constant-resolution mesh (3 km) that is six times more costly to run. The optimized variable-resolution, unstructured triangular mesh is faithful to land geometry and wave transformation gradients while relaxing focus in deeper regions where gradients are typically less pronounced. Wave parameters measured via satellite altimetry, stationary buoy networks, and drifting buoys are employed to demonstrate not only a substantial increase in performance over a coarse, constant-resolution grid (40 km), with RMSE reduced from 0.28 m to 0.14 m and Correlation Coefficient (CC) improved from 0.92 to 0.98 overall, but also a comparable level of performance to that of a mesh that has undergone a full convergence analysis. Performance comparisons isolated to shallow regions and near cyclonic storms highlight the importance of resolving relevant geometries. For nearshore data, RMSE improves from 0.29 m to 0.13 m and CC from 0.89 to 0.98; in shallow regions, RMSE from 0.29 m to 0.15 m and CC from 0.88 to 0.97; and under cyclonic conditions, RMSE from 0.62 m to 0.35 m and CC from 0.93 to 0.98. Wave model results using the variable-resolution mesh were further analyzed to provide a detailed summary of the wave climate, including wind-wave and swell partitions, over the six-month study period in the study area.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"199 ","pages":"Article 102623"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing multi-scale wave modeling: Global and coastal applications during the 2022 Atlantic hurricane season\",\"authors\":\"Ali Abdolali , Tyler J. Hesser , Aron Roland , Martha Schönau , David A. Honegger , Jane McKee Smith , Héloïse Michaud , Luca Centurioni\",\"doi\":\"10.1016/j.ocemod.2025.102623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using the six-month hurricane season of 2022 as a case study and the spectral wave model WAVEWATCH III, this effort shows that wave parameters produced via a variable-resolution global mesh (5–30 km) agree with a diverse array of validating observational datasets at a level comparable to that of a constant-resolution mesh (3 km) that is six times more costly to run. The optimized variable-resolution, unstructured triangular mesh is faithful to land geometry and wave transformation gradients while relaxing focus in deeper regions where gradients are typically less pronounced. Wave parameters measured via satellite altimetry, stationary buoy networks, and drifting buoys are employed to demonstrate not only a substantial increase in performance over a coarse, constant-resolution grid (40 km), with RMSE reduced from 0.28 m to 0.14 m and Correlation Coefficient (CC) improved from 0.92 to 0.98 overall, but also a comparable level of performance to that of a mesh that has undergone a full convergence analysis. Performance comparisons isolated to shallow regions and near cyclonic storms highlight the importance of resolving relevant geometries. For nearshore data, RMSE improves from 0.29 m to 0.13 m and CC from 0.89 to 0.98; in shallow regions, RMSE from 0.29 m to 0.15 m and CC from 0.88 to 0.97; and under cyclonic conditions, RMSE from 0.62 m to 0.35 m and CC from 0.93 to 0.98. Wave model results using the variable-resolution mesh were further analyzed to provide a detailed summary of the wave climate, including wind-wave and swell partitions, over the six-month study period in the study area.</div></div>\",\"PeriodicalId\":19457,\"journal\":{\"name\":\"Ocean Modelling\",\"volume\":\"199 \",\"pages\":\"Article 102623\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Modelling\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S146350032500126X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146350032500126X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Advancing multi-scale wave modeling: Global and coastal applications during the 2022 Atlantic hurricane season
Using the six-month hurricane season of 2022 as a case study and the spectral wave model WAVEWATCH III, this effort shows that wave parameters produced via a variable-resolution global mesh (5–30 km) agree with a diverse array of validating observational datasets at a level comparable to that of a constant-resolution mesh (3 km) that is six times more costly to run. The optimized variable-resolution, unstructured triangular mesh is faithful to land geometry and wave transformation gradients while relaxing focus in deeper regions where gradients are typically less pronounced. Wave parameters measured via satellite altimetry, stationary buoy networks, and drifting buoys are employed to demonstrate not only a substantial increase in performance over a coarse, constant-resolution grid (40 km), with RMSE reduced from 0.28 m to 0.14 m and Correlation Coefficient (CC) improved from 0.92 to 0.98 overall, but also a comparable level of performance to that of a mesh that has undergone a full convergence analysis. Performance comparisons isolated to shallow regions and near cyclonic storms highlight the importance of resolving relevant geometries. For nearshore data, RMSE improves from 0.29 m to 0.13 m and CC from 0.89 to 0.98; in shallow regions, RMSE from 0.29 m to 0.15 m and CC from 0.88 to 0.97; and under cyclonic conditions, RMSE from 0.62 m to 0.35 m and CC from 0.93 to 0.98. Wave model results using the variable-resolution mesh were further analyzed to provide a detailed summary of the wave climate, including wind-wave and swell partitions, over the six-month study period in the study area.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.