有限域上多项式的Brocard-Ramanujan问题

IF 1.2 3区 数学 Q1 MATHEMATICS
Wataru Takeda
{"title":"有限域上多项式的Brocard-Ramanujan问题","authors":"Wataru Takeda","doi":"10.1016/j.ffa.2025.102731","DOIUrl":null,"url":null,"abstract":"<div><div>The Brocard-Ramanujan problem is an unsolved number theory problem to find integer solutions <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> to <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>=</mo><mi>n</mi><mo>!</mo></math></span>. In this paper, we consider this problem over polynomial rings <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is a finite field with <em>q</em> elements. We find all solutions to the equation <span><math><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>=</mo><msub><mrow><mi>Π</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denotes the Carlitz factorial. More precisely, we characterize all solutions and prove that there are infinitely many solutions if and only if <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is an extension of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. This characterization is achieved without using the Mason-Stothers theorem, analogous to the abc conjecture for integers.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"110 ","pages":"Article 102731"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brocard-Ramanujan problem for polynomials over finite fields\",\"authors\":\"Wataru Takeda\",\"doi\":\"10.1016/j.ffa.2025.102731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Brocard-Ramanujan problem is an unsolved number theory problem to find integer solutions <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> to <span><math><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>=</mo><mi>n</mi><mo>!</mo></math></span>. In this paper, we consider this problem over polynomial rings <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>T</mi><mo>]</mo></math></span>, where <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is a finite field with <em>q</em> elements. We find all solutions to the equation <span><math><msup><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn><mo>=</mo><msub><mrow><mi>Π</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>C</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denotes the Carlitz factorial. More precisely, we characterize all solutions and prove that there are infinitely many solutions if and only if <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> is an extension of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. This characterization is achieved without using the Mason-Stothers theorem, analogous to the abc conjecture for integers.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"110 \",\"pages\":\"Article 102731\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001613\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001613","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Brocard-Ramanujan问题是求解x2−1=n!的整数解(x,n)的未解数论问题。本文考虑多项式环Fq[T]上的这一问题,其中Fq是一个有q个元素的有限域。我们找到方程X2−1=ΠC(n)的所有解,其中ΠC(n)表示Carlitz阶乘。更准确地说,我们刻画了所有解,并证明了当且仅当Fq是F4的扩展时存在无穷多个解。这个特征是不使用梅森-斯托瑟斯定理,类似于整数的abc猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brocard-Ramanujan problem for polynomials over finite fields
The Brocard-Ramanujan problem is an unsolved number theory problem to find integer solutions (x,n) to x21=n!. In this paper, we consider this problem over polynomial rings Fq[T], where Fq is a finite field with q elements. We find all solutions to the equation X21=ΠC(n), where ΠC(n) denotes the Carlitz factorial. More precisely, we characterize all solutions and prove that there are infinitely many solutions if and only if Fq is an extension of F4. This characterization is achieved without using the Mason-Stothers theorem, analogous to the abc conjecture for integers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信