FDG-PET脑葡萄糖低代谢预测认知正常成人阿尔茨海默病进展途径:纵向竞争风险模型

IF 2.7
Mustafa S. Alhasan , Ayman S. Alhasan , James Milburn , Mohammed Khalil , Abdullah Almaghraby , Omar Alharthi , Seham Hamoud , Muhammed Amir Essibayi , Yasir Hassan Elhassan , Fabricio Feltrin , Sumit Singh , Ahmed Y. Azzam
{"title":"FDG-PET脑葡萄糖低代谢预测认知正常成人阿尔茨海默病进展途径:纵向竞争风险模型","authors":"Mustafa S. Alhasan ,&nbsp;Ayman S. Alhasan ,&nbsp;James Milburn ,&nbsp;Mohammed Khalil ,&nbsp;Abdullah Almaghraby ,&nbsp;Omar Alharthi ,&nbsp;Seham Hamoud ,&nbsp;Muhammed Amir Essibayi ,&nbsp;Yasir Hassan Elhassan ,&nbsp;Fabricio Feltrin ,&nbsp;Sumit Singh ,&nbsp;Ahmed Y. Azzam","doi":"10.1016/j.metop.2025.100400","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Alzheimer's disease progression follows distinct pathways in cognitively normal individuals: direct conversion to dementia versus sequential decline through mild cognitive impairment (MCI). The metabolic determinants of pathway selection remain unclear, limiting personalized intervention strategies.</div></div><div><h3>Methods</h3><div>We analyzed 1136 cognitively normal participants from the Alzheimer's Disease Neuroimaging Initiative with baseline fluorodeoxyglucose positron emission tomography (FDG-PET) and longitudinal outcomes over ten years. Competing risks regression modeled pathway-specific transitions, while multinomial logistic regression predicted pathway membership using brain glucose metabolism. Cross-validation assessed pathway classification accuracy across temporal splits.</div></div><div><h3>Results</h3><div>Four progression pathways were concluded from our analyses, cognitive stability (32.8 %), sequential MCI-only decline (34.9 %), accelerated MCI-to-dementia progression (15.8 %), and rapid direct conversion (16.5 %). Brain glucose hypometabolism determined pathway selection with significant effects: participants with severe hypometabolism (FDG z-score &lt; -0.5) demonstrated 7.4-fold acceleration in direct conversion velocity compared to preserved metabolism (17.12 vs 2.31 per 100 person-years, P-value&lt;0.001). Pathway prediction models achieved excellent discrimination for direct conversion (AUC = 0.994) and acceptable performance for sequential pathways (AUC = 0.680). Metabolic phenotyping demonstrated peculiar vulnerability profiles, cognitive stability maintained metabolic reserve (FDG +0.57 ± 0.58), while rapid converters demonstrated metabolic failure patterns (FDG -0.18 ± 0.88).</div></div><div><h3>Conclusions</h3><div>Based on our modeling findings, we observed that brain glucose metabolism could serve as a pathway determinant rather than simply a decline predictor, which could play a promising role in precision medicine approaches to Alzheimer's disease prevention. FDG-PET biomarkers can stratify individuals for pathway-specific interventions, transforming reactive dementia care into proactive pathway-guided management.</div></div>","PeriodicalId":94141,"journal":{"name":"Metabolism open","volume":"28 ","pages":"Article 100400"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FDG-PET brain glucose hypometabolism predicts Alzheimer's disease progression pathways in cognitively normal adults: A longitudinal competing risks modeling\",\"authors\":\"Mustafa S. Alhasan ,&nbsp;Ayman S. Alhasan ,&nbsp;James Milburn ,&nbsp;Mohammed Khalil ,&nbsp;Abdullah Almaghraby ,&nbsp;Omar Alharthi ,&nbsp;Seham Hamoud ,&nbsp;Muhammed Amir Essibayi ,&nbsp;Yasir Hassan Elhassan ,&nbsp;Fabricio Feltrin ,&nbsp;Sumit Singh ,&nbsp;Ahmed Y. Azzam\",\"doi\":\"10.1016/j.metop.2025.100400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>Alzheimer's disease progression follows distinct pathways in cognitively normal individuals: direct conversion to dementia versus sequential decline through mild cognitive impairment (MCI). The metabolic determinants of pathway selection remain unclear, limiting personalized intervention strategies.</div></div><div><h3>Methods</h3><div>We analyzed 1136 cognitively normal participants from the Alzheimer's Disease Neuroimaging Initiative with baseline fluorodeoxyglucose positron emission tomography (FDG-PET) and longitudinal outcomes over ten years. Competing risks regression modeled pathway-specific transitions, while multinomial logistic regression predicted pathway membership using brain glucose metabolism. Cross-validation assessed pathway classification accuracy across temporal splits.</div></div><div><h3>Results</h3><div>Four progression pathways were concluded from our analyses, cognitive stability (32.8 %), sequential MCI-only decline (34.9 %), accelerated MCI-to-dementia progression (15.8 %), and rapid direct conversion (16.5 %). Brain glucose hypometabolism determined pathway selection with significant effects: participants with severe hypometabolism (FDG z-score &lt; -0.5) demonstrated 7.4-fold acceleration in direct conversion velocity compared to preserved metabolism (17.12 vs 2.31 per 100 person-years, P-value&lt;0.001). Pathway prediction models achieved excellent discrimination for direct conversion (AUC = 0.994) and acceptable performance for sequential pathways (AUC = 0.680). Metabolic phenotyping demonstrated peculiar vulnerability profiles, cognitive stability maintained metabolic reserve (FDG +0.57 ± 0.58), while rapid converters demonstrated metabolic failure patterns (FDG -0.18 ± 0.88).</div></div><div><h3>Conclusions</h3><div>Based on our modeling findings, we observed that brain glucose metabolism could serve as a pathway determinant rather than simply a decline predictor, which could play a promising role in precision medicine approaches to Alzheimer's disease prevention. FDG-PET biomarkers can stratify individuals for pathway-specific interventions, transforming reactive dementia care into proactive pathway-guided management.</div></div>\",\"PeriodicalId\":94141,\"journal\":{\"name\":\"Metabolism open\",\"volume\":\"28 \",\"pages\":\"Article 100400\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolism open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589936825000568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589936825000568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在认知正常的个体中,阿尔茨海默病的进展遵循不同的途径:直接转化为痴呆与通过轻度认知障碍(MCI)的顺序衰退。途径选择的代谢决定因素仍然不清楚,限制了个性化的干预策略。方法采用基线氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)和10年来的纵向结果分析了来自阿尔茨海默病神经影像学计划的1136名认知正常的参与者。竞争风险回归模拟通路特异性转变,而多项逻辑回归利用脑葡萄糖代谢预测通路成员。交叉验证评估了跨时间分裂的通路分类准确性。结果从我们的分析中得出四种进展途径,认知稳定(32.8%),顺序mci仅下降(34.9%),加速mci到痴呆进展(15.8%)和快速直接转换(16.5%)。脑葡萄糖低代谢决定了具有显著影响的途径选择:与保存代谢相比,严重低代谢(FDG z-score < -0.5)的参与者的直接转化速度加快了7.4倍(17.12 vs 2.31 / 100人年,p值<;0.001)。路径预测模型对直接转化具有很好的判别性(AUC = 0.994),对顺序路径具有较好的判别性(AUC = 0.680)。代谢表型表现出特殊的脆弱性特征,认知稳定性维持代谢储备(FDG +0.57±0.58),而快速转化者表现出代谢失败模式(FDG -0.18±0.88)。基于我们的建模发现,我们观察到脑葡萄糖代谢可以作为一个通路决定因素,而不仅仅是一个衰退预测因素,这可能在精准医学方法中发挥有希望的作用,以预防阿尔茨海默病。FDG-PET生物标志物可以对个体进行通路特异性干预,将反应性痴呆护理转变为主动的通路引导管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FDG-PET brain glucose hypometabolism predicts Alzheimer's disease progression pathways in cognitively normal adults: A longitudinal competing risks modeling

Introduction

Alzheimer's disease progression follows distinct pathways in cognitively normal individuals: direct conversion to dementia versus sequential decline through mild cognitive impairment (MCI). The metabolic determinants of pathway selection remain unclear, limiting personalized intervention strategies.

Methods

We analyzed 1136 cognitively normal participants from the Alzheimer's Disease Neuroimaging Initiative with baseline fluorodeoxyglucose positron emission tomography (FDG-PET) and longitudinal outcomes over ten years. Competing risks regression modeled pathway-specific transitions, while multinomial logistic regression predicted pathway membership using brain glucose metabolism. Cross-validation assessed pathway classification accuracy across temporal splits.

Results

Four progression pathways were concluded from our analyses, cognitive stability (32.8 %), sequential MCI-only decline (34.9 %), accelerated MCI-to-dementia progression (15.8 %), and rapid direct conversion (16.5 %). Brain glucose hypometabolism determined pathway selection with significant effects: participants with severe hypometabolism (FDG z-score < -0.5) demonstrated 7.4-fold acceleration in direct conversion velocity compared to preserved metabolism (17.12 vs 2.31 per 100 person-years, P-value<0.001). Pathway prediction models achieved excellent discrimination for direct conversion (AUC = 0.994) and acceptable performance for sequential pathways (AUC = 0.680). Metabolic phenotyping demonstrated peculiar vulnerability profiles, cognitive stability maintained metabolic reserve (FDG +0.57 ± 0.58), while rapid converters demonstrated metabolic failure patterns (FDG -0.18 ± 0.88).

Conclusions

Based on our modeling findings, we observed that brain glucose metabolism could serve as a pathway determinant rather than simply a decline predictor, which could play a promising role in precision medicine approaches to Alzheimer's disease prevention. FDG-PET biomarkers can stratify individuals for pathway-specific interventions, transforming reactive dementia care into proactive pathway-guided management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolism open
Metabolism open Agricultural and Biological Sciences (General), Endocrinology, Endocrinology, Diabetes and Metabolism
自引率
0.00%
发文量
0
审稿时长
40 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信