探讨印度海得拉巴和班加罗尔地区地表热的关系及其影响因素

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
K.S. Arunab, Aneesh Mathew
{"title":"探讨印度海得拉巴和班加罗尔地区地表热的关系及其影响因素","authors":"K.S. Arunab,&nbsp;Aneesh Mathew","doi":"10.1016/j.ifacsc.2025.100340","DOIUrl":null,"url":null,"abstract":"<div><div>This study examined the relationship between Land Surface Temperature (LST) and various controllable, partially controllable, and uncontrollable factors in the cities of Bangalore and Hyderabad. LST showed significant correlations with geographical coordinates in both cities. Despite these directional differences, both cities exhibited consistent correlations with key environmental factors, including Enhanced Vegetation Index (EVI), Normalized Difference Built-up Index (NDBI), Land Cover (LC), Modified Bareness Index (MBI), slope and Modified Normalized Difference Water Index (MNDWI), highlighting the influence of vegetation and built-up areas on urban heat dynamics. The study further compared continuous and grouped LST representations, revealing that grouped LST data exhibited stronger and more consistent correlations with environmental factors, suggesting the presence of non-linear relationships. Factors such as EVI, LC, MBI, MNDWI, Distance to Bare soil (DBS), and Distance to Built-up (DBU) exhibited stronger correlations with grouped LST, highlighting the complexity of LST interactions across different temperature intervals. Grouped LST in Bangalore showed high correlations with LC (0.95), MBI (−0.941), and EVI (−0.938), while in Hyderabad, the strongest associations were with EVI (−0.965), LC (0.929), and DBS (0.918). The study highlights the importance of selecting appropriate LST representations in model development, as stronger correlations with grouped LST suggest non-linearities and potential threshold effects. The study underscores the critical role of vegetation, water bodies, and urban form in shaping LST patterns, offering valuable insights for urban heat mitigation. The study provides valuable insights for policymakers and climate resilience planners, supporting sustainable urban development and enhanced thermal comfort.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"34 ","pages":"Article 100340"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the nexus of surface heat and influencing factors in Hyderabad and Bangalore, India\",\"authors\":\"K.S. Arunab,&nbsp;Aneesh Mathew\",\"doi\":\"10.1016/j.ifacsc.2025.100340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examined the relationship between Land Surface Temperature (LST) and various controllable, partially controllable, and uncontrollable factors in the cities of Bangalore and Hyderabad. LST showed significant correlations with geographical coordinates in both cities. Despite these directional differences, both cities exhibited consistent correlations with key environmental factors, including Enhanced Vegetation Index (EVI), Normalized Difference Built-up Index (NDBI), Land Cover (LC), Modified Bareness Index (MBI), slope and Modified Normalized Difference Water Index (MNDWI), highlighting the influence of vegetation and built-up areas on urban heat dynamics. The study further compared continuous and grouped LST representations, revealing that grouped LST data exhibited stronger and more consistent correlations with environmental factors, suggesting the presence of non-linear relationships. Factors such as EVI, LC, MBI, MNDWI, Distance to Bare soil (DBS), and Distance to Built-up (DBU) exhibited stronger correlations with grouped LST, highlighting the complexity of LST interactions across different temperature intervals. Grouped LST in Bangalore showed high correlations with LC (0.95), MBI (−0.941), and EVI (−0.938), while in Hyderabad, the strongest associations were with EVI (−0.965), LC (0.929), and DBS (0.918). The study highlights the importance of selecting appropriate LST representations in model development, as stronger correlations with grouped LST suggest non-linearities and potential threshold effects. The study underscores the critical role of vegetation, water bodies, and urban form in shaping LST patterns, offering valuable insights for urban heat mitigation. The study provides valuable insights for policymakers and climate resilience planners, supporting sustainable urban development and enhanced thermal comfort.</div></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"34 \",\"pages\":\"Article 100340\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S246860182500046X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246860182500046X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了班加罗尔和海得拉巴的地表温度与各种可控、部分可控和不可控因素的关系。两个城市的地表温度与地理坐标呈显著相关。尽管存在这些方向性差异,但两个城市与增强植被指数(EVI)、归一化建筑差异指数(NDBI)、土地覆盖(LC)、修正光秃指数(MBI)、坡度和修正归一化水差异指数(MNDWI)等关键环境因子的相关性一致,突出了植被和建成区对城市热动态的影响。研究进一步比较了连续和分组的地表温度表示,发现分组的地表温度数据与环境因素表现出更强、更一致的相关性,表明存在非线性关系。EVI、LC、MBI、MNDWI、到裸土距离(DBS)和到建筑距离(DBU)等因子与分组LST的相关性较强,凸显了不同温度区间LST相互作用的复杂性。分组LST在班加罗尔与LC(0.95)、MBI(- 0.941)和EVI(- 0.938)呈正相关,而在海得拉巴与EVI(- 0.965)、LC(0.929)和DBS(0.918)呈正相关。该研究强调了在模型开发中选择适当的LST表示的重要性,因为与分组LST的较强相关性表明非线性和潜在的阈值效应。该研究强调了植被、水体和城市形态在形成地表温度模式中的关键作用,为城市热缓解提供了有价值的见解。该研究为政策制定者和气候适应能力规划者提供了有价值的见解,支持可持续城市发展和增强热舒适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the nexus of surface heat and influencing factors in Hyderabad and Bangalore, India
This study examined the relationship between Land Surface Temperature (LST) and various controllable, partially controllable, and uncontrollable factors in the cities of Bangalore and Hyderabad. LST showed significant correlations with geographical coordinates in both cities. Despite these directional differences, both cities exhibited consistent correlations with key environmental factors, including Enhanced Vegetation Index (EVI), Normalized Difference Built-up Index (NDBI), Land Cover (LC), Modified Bareness Index (MBI), slope and Modified Normalized Difference Water Index (MNDWI), highlighting the influence of vegetation and built-up areas on urban heat dynamics. The study further compared continuous and grouped LST representations, revealing that grouped LST data exhibited stronger and more consistent correlations with environmental factors, suggesting the presence of non-linear relationships. Factors such as EVI, LC, MBI, MNDWI, Distance to Bare soil (DBS), and Distance to Built-up (DBU) exhibited stronger correlations with grouped LST, highlighting the complexity of LST interactions across different temperature intervals. Grouped LST in Bangalore showed high correlations with LC (0.95), MBI (−0.941), and EVI (−0.938), while in Hyderabad, the strongest associations were with EVI (−0.965), LC (0.929), and DBS (0.918). The study highlights the importance of selecting appropriate LST representations in model development, as stronger correlations with grouped LST suggest non-linearities and potential threshold effects. The study underscores the critical role of vegetation, water bodies, and urban form in shaping LST patterns, offering valuable insights for urban heat mitigation. The study provides valuable insights for policymakers and climate resilience planners, supporting sustainable urban development and enhanced thermal comfort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信