E.M. Jalal , H. Kerrai , H. Saadi , M. Salama , A. Hasnaoui , M. El Bouziani
{"title":"自旋电子和清洁能源用镁基Mg(Fe/Mn)2O4尖晶石半金属铁磁性和光学性质的第一性原理研究","authors":"E.M. Jalal , H. Kerrai , H. Saadi , M. Salama , A. Hasnaoui , M. El Bouziani","doi":"10.1016/j.physb.2025.417849","DOIUrl":null,"url":null,"abstract":"<div><div>We utilized first principles calculations so as to investigate structural stability, optical, electronic, as well as magnetic properties for Mg(Fe/Mn)<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> spinel alloys. We showed that both compounds are ferromagnetic, with optimal lattice parameters of 8.47 Å for MgFe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and 10.07 Å for MgMn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>. The electronic properties revealed that both compounds exhibit semiconductor behavior, with direct band gaps of 0.18 eV for MgFe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and 2.8 eV for MgMn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> in the spin-down state, while displaying metallic behavior in the spin-up state. Additionally, the optical analysis indicates high absorption coefficients in the UV region, coupled with high reflectivity at 0 eV, highlighting their favorable optoelectronic characteristics. Furthermore, the magnetic analysis demonstrates that both compounds exhibit ferromagnetic properties, with magnetic moments approximating 5 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> for MgFe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and 4 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> for MgMn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>. Based on these results, these alloys show potential as candidates for spintronic devices.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417849"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles investigation of half-metallic ferromagnetism and optical properties of magnesium-based Mg(Fe/Mn)2O4 spinels for spintronic and clean energy\",\"authors\":\"E.M. Jalal , H. Kerrai , H. Saadi , M. Salama , A. Hasnaoui , M. El Bouziani\",\"doi\":\"10.1016/j.physb.2025.417849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We utilized first principles calculations so as to investigate structural stability, optical, electronic, as well as magnetic properties for Mg(Fe/Mn)<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> spinel alloys. We showed that both compounds are ferromagnetic, with optimal lattice parameters of 8.47 Å for MgFe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and 10.07 Å for MgMn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>. The electronic properties revealed that both compounds exhibit semiconductor behavior, with direct band gaps of 0.18 eV for MgFe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and 2.8 eV for MgMn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> in the spin-down state, while displaying metallic behavior in the spin-up state. Additionally, the optical analysis indicates high absorption coefficients in the UV region, coupled with high reflectivity at 0 eV, highlighting their favorable optoelectronic characteristics. Furthermore, the magnetic analysis demonstrates that both compounds exhibit ferromagnetic properties, with magnetic moments approximating 5 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> for MgFe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> and 4 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> for MgMn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>. Based on these results, these alloys show potential as candidates for spintronic devices.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"717 \",\"pages\":\"Article 417849\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625009664\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009664","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
First-principles investigation of half-metallic ferromagnetism and optical properties of magnesium-based Mg(Fe/Mn)2O4 spinels for spintronic and clean energy
We utilized first principles calculations so as to investigate structural stability, optical, electronic, as well as magnetic properties for Mg(Fe/Mn)O spinel alloys. We showed that both compounds are ferromagnetic, with optimal lattice parameters of 8.47 Å for MgFeO and 10.07 Å for MgMnO. The electronic properties revealed that both compounds exhibit semiconductor behavior, with direct band gaps of 0.18 eV for MgFeO and 2.8 eV for MgMnO in the spin-down state, while displaying metallic behavior in the spin-up state. Additionally, the optical analysis indicates high absorption coefficients in the UV region, coupled with high reflectivity at 0 eV, highlighting their favorable optoelectronic characteristics. Furthermore, the magnetic analysis demonstrates that both compounds exhibit ferromagnetic properties, with magnetic moments approximating 5 for MgFeO and 4 for MgMnO. Based on these results, these alloys show potential as candidates for spintronic devices.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces