pt修饰ZnO和NiO薄膜的低温CO2传感性能:合成与表征

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
D.A. Vázquez-Vargas, P. Pizá-Ruiz, O. Solís-Canto, R.J. Sáenz-Hernández, P. Amézaga-Madrid
{"title":"pt修饰ZnO和NiO薄膜的低温CO2传感性能:合成与表征","authors":"D.A. Vázquez-Vargas,&nbsp;P. Pizá-Ruiz,&nbsp;O. Solís-Canto,&nbsp;R.J. Sáenz-Hernández,&nbsp;P. Amézaga-Madrid","doi":"10.1016/j.physb.2025.417860","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the synthesis of ZnO single-layer films and ZnO/NiO multilayer heterostructures decorated with Pt nanoparticles using aerosol-assisted chemical vapor deposition (AACVD). The method provided a scalable, efficient, and versatile route to fabricate crystalline coatings with tunable composition, controlled morphology, and optical properties at moderate processing temperatures. Structural and morphological analyses confirmed high crystallinity and defect control, directly influencing gas adsorption and sensing behavior. Gas sensing experiments using 10,000 ppm CO<sub>2</sub> demonstrated notable performance: ZnO films exhibited high sensitivity at 100 °C, while ZnO/NiO/Pt heterostructures achieved optimal operation at 200 °C. Under UV-A illumination, ZnO/Pt films displayed enhanced sensitivity, reaching 9.4 ± 0.6 % at 100 °C, with significantly reduced response (8.1 ± 1.3 min) and recovery times (9.4 ± 1.3 min). These findings reveal the synergistic effects of heterostructuring, Pt nanoparticle functionalization, and photoactivation, positioning AACVD-grown oxide films as a competitive platform for energy-efficient and scalable CO<sub>2</sub> sensing applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417860"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature CO2 sensing performance of Pt-decorated ZnO and NiO thin films: synthesis and characterization\",\"authors\":\"D.A. Vázquez-Vargas,&nbsp;P. Pizá-Ruiz,&nbsp;O. Solís-Canto,&nbsp;R.J. Sáenz-Hernández,&nbsp;P. Amézaga-Madrid\",\"doi\":\"10.1016/j.physb.2025.417860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents the synthesis of ZnO single-layer films and ZnO/NiO multilayer heterostructures decorated with Pt nanoparticles using aerosol-assisted chemical vapor deposition (AACVD). The method provided a scalable, efficient, and versatile route to fabricate crystalline coatings with tunable composition, controlled morphology, and optical properties at moderate processing temperatures. Structural and morphological analyses confirmed high crystallinity and defect control, directly influencing gas adsorption and sensing behavior. Gas sensing experiments using 10,000 ppm CO<sub>2</sub> demonstrated notable performance: ZnO films exhibited high sensitivity at 100 °C, while ZnO/NiO/Pt heterostructures achieved optimal operation at 200 °C. Under UV-A illumination, ZnO/Pt films displayed enhanced sensitivity, reaching 9.4 ± 0.6 % at 100 °C, with significantly reduced response (8.1 ± 1.3 min) and recovery times (9.4 ± 1.3 min). These findings reveal the synergistic effects of heterostructuring, Pt nanoparticle functionalization, and photoactivation, positioning AACVD-grown oxide films as a competitive platform for energy-efficient and scalable CO<sub>2</sub> sensing applications.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"717 \",\"pages\":\"Article 417860\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625009779\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625009779","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文采用气溶胶辅助化学气相沉积(AACVD)技术合成了ZnO单层薄膜和Pt纳米粒子修饰的ZnO/NiO多层异质结构。该方法提供了一种可扩展、高效和通用的方法,可以在适当的加工温度下制造具有可调成分、可控形貌和光学性能的晶体涂层。结构和形态分析证实了高结晶度和缺陷控制,直接影响气体吸附和传感行为。在10,000 ppm CO2条件下的气敏实验中,ZnO薄膜在100°C时具有较高的灵敏度,而ZnO/NiO/Pt异质结构在200°C时具有最佳的工作性能。在UV-A照射下,ZnO/Pt薄膜在100°C下灵敏度达到9.4±0.6%,响应时间(8.1±1.3 min)和恢复时间(9.4±1.3 min)显著降低。这些发现揭示了异质结构、Pt纳米粒子功能化和光活化的协同效应,将aacvd生长的氧化膜定位为节能和可扩展的二氧化碳传感应用的竞争平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low-temperature CO2 sensing performance of Pt-decorated ZnO and NiO thin films: synthesis and characterization

Low-temperature CO2 sensing performance of Pt-decorated ZnO and NiO thin films: synthesis and characterization
This work presents the synthesis of ZnO single-layer films and ZnO/NiO multilayer heterostructures decorated with Pt nanoparticles using aerosol-assisted chemical vapor deposition (AACVD). The method provided a scalable, efficient, and versatile route to fabricate crystalline coatings with tunable composition, controlled morphology, and optical properties at moderate processing temperatures. Structural and morphological analyses confirmed high crystallinity and defect control, directly influencing gas adsorption and sensing behavior. Gas sensing experiments using 10,000 ppm CO2 demonstrated notable performance: ZnO films exhibited high sensitivity at 100 °C, while ZnO/NiO/Pt heterostructures achieved optimal operation at 200 °C. Under UV-A illumination, ZnO/Pt films displayed enhanced sensitivity, reaching 9.4 ± 0.6 % at 100 °C, with significantly reduced response (8.1 ± 1.3 min) and recovery times (9.4 ± 1.3 min). These findings reveal the synergistic effects of heterostructuring, Pt nanoparticle functionalization, and photoactivation, positioning AACVD-grown oxide films as a competitive platform for energy-efficient and scalable CO2 sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信