{"title":"基于OTPA和机器学习的多源系统NVH有效根源分析混合策略","authors":"Sharif Khakshournia , Shaygan Shahed Haghighi , Marzie Majidi , Farhad Najafnia , Hamed Haddad Khodaparast","doi":"10.1016/j.apacoust.2025.111060","DOIUrl":null,"url":null,"abstract":"<div><div>The growing awareness of health benefits, along with the competitive emphasis on vehicle comfort, has led automakers to place greater attention on reducing Noise, Vibration, and Harshness (NVH). One of the most beneficial techniques for NVH engineers to identify, rank, and eliminate dominant noise and vibration sources and paths is Transfer Path Analysis (TPA). Unlike traditional TPA, Operational Transfer Path Analysis (OTPA) requires neither the preliminary acquisition of the transfer matrix between excitation and response points nor the measurement of forces transferred through the active and passive side connection points. Although the OTPA method offers significant advantages over classical TPA methods, it still faces challenges such as data loss caused by the pseudo-inversion of the indicator matrix. In this paper, we estimate the transmissibility matrix using a machine learning-based regression algorithm (random forest). We demonstrated that machine learning is an effective alternative to the truncated Singular Value Decomposition (SVD) method for estimating the transmissibility matrix, as it is a swift solution that preserves essential information in the indicator matrix. The efficiency of the method has been verified by a 2.28 % improvement in the Sound Pressure Level (SPL) of the driver’s ear noise of a sedan-type vehicle through the modification of the most critical path found by this approach.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"242 ","pages":"Article 111060"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid strategy of OTPA and machine learning for efficient root-cause analysis of NVH in multi-source systems\",\"authors\":\"Sharif Khakshournia , Shaygan Shahed Haghighi , Marzie Majidi , Farhad Najafnia , Hamed Haddad Khodaparast\",\"doi\":\"10.1016/j.apacoust.2025.111060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing awareness of health benefits, along with the competitive emphasis on vehicle comfort, has led automakers to place greater attention on reducing Noise, Vibration, and Harshness (NVH). One of the most beneficial techniques for NVH engineers to identify, rank, and eliminate dominant noise and vibration sources and paths is Transfer Path Analysis (TPA). Unlike traditional TPA, Operational Transfer Path Analysis (OTPA) requires neither the preliminary acquisition of the transfer matrix between excitation and response points nor the measurement of forces transferred through the active and passive side connection points. Although the OTPA method offers significant advantages over classical TPA methods, it still faces challenges such as data loss caused by the pseudo-inversion of the indicator matrix. In this paper, we estimate the transmissibility matrix using a machine learning-based regression algorithm (random forest). We demonstrated that machine learning is an effective alternative to the truncated Singular Value Decomposition (SVD) method for estimating the transmissibility matrix, as it is a swift solution that preserves essential information in the indicator matrix. The efficiency of the method has been verified by a 2.28 % improvement in the Sound Pressure Level (SPL) of the driver’s ear noise of a sedan-type vehicle through the modification of the most critical path found by this approach.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":\"242 \",\"pages\":\"Article 111060\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X25005328\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25005328","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
A hybrid strategy of OTPA and machine learning for efficient root-cause analysis of NVH in multi-source systems
The growing awareness of health benefits, along with the competitive emphasis on vehicle comfort, has led automakers to place greater attention on reducing Noise, Vibration, and Harshness (NVH). One of the most beneficial techniques for NVH engineers to identify, rank, and eliminate dominant noise and vibration sources and paths is Transfer Path Analysis (TPA). Unlike traditional TPA, Operational Transfer Path Analysis (OTPA) requires neither the preliminary acquisition of the transfer matrix between excitation and response points nor the measurement of forces transferred through the active and passive side connection points. Although the OTPA method offers significant advantages over classical TPA methods, it still faces challenges such as data loss caused by the pseudo-inversion of the indicator matrix. In this paper, we estimate the transmissibility matrix using a machine learning-based regression algorithm (random forest). We demonstrated that machine learning is an effective alternative to the truncated Singular Value Decomposition (SVD) method for estimating the transmissibility matrix, as it is a swift solution that preserves essential information in the indicator matrix. The efficiency of the method has been verified by a 2.28 % improvement in the Sound Pressure Level (SPL) of the driver’s ear noise of a sedan-type vehicle through the modification of the most critical path found by this approach.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.