{"title":"芦荟提取物生物合成cu掺杂TiO2纳米颗粒净化消毒空气","authors":"Niloofar Arefipour , Hassan Koohestani , Hedayat Gholami","doi":"10.1016/j.giant.2025.100375","DOIUrl":null,"url":null,"abstract":"<div><div>The use of plant extracts for synthesizing nanoparticles has garnered significant attention due to their simplicity, environmental friendliness, and cost-effectiveness. This study synthesized titanium dioxide (titania, TiO<sub>2</sub>) nanoparticles using Aloe vera extract. Its doping with copper was also investigated to reduce the electron/hole pair recombination rate and improve the photocatalytic activity of titania. Biosynthesized titania nanoparticles were characterized by X-ray diffraction (XRD), Diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). XRD reported the formation of crystals with sizes of 4–7 nm by the Scherrer method and 5–27 nm by the Williamson-Hall method. FE-SEM and TEM analysis showed the formation of spherical particles. Spectroscopic results showed that the addition of the copper ion reduced the band gap energy from 3.10 eV to 2.89 eV. It was observed that, under light, increasing the dopant concentration from 1 % to 3 % resulted in an increase in the bacterial removal rate from 93 % to 96 % and the particulate matter removal rate from 91 % to 94 %. Therefore, Cu-TiO<sub>2</sub> nanoparticles biosynthesized with <em>Aloe vera</em> extract exhibited increased photocatalytic and antibacterial activity, which can be utilized for air purification.</div></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"26 ","pages":"Article 100375"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air purification and disinfection by biosynthesized Cu-doped TiO2 nanoparticles with Aloe vera extract\",\"authors\":\"Niloofar Arefipour , Hassan Koohestani , Hedayat Gholami\",\"doi\":\"10.1016/j.giant.2025.100375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of plant extracts for synthesizing nanoparticles has garnered significant attention due to their simplicity, environmental friendliness, and cost-effectiveness. This study synthesized titanium dioxide (titania, TiO<sub>2</sub>) nanoparticles using Aloe vera extract. Its doping with copper was also investigated to reduce the electron/hole pair recombination rate and improve the photocatalytic activity of titania. Biosynthesized titania nanoparticles were characterized by X-ray diffraction (XRD), Diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). XRD reported the formation of crystals with sizes of 4–7 nm by the Scherrer method and 5–27 nm by the Williamson-Hall method. FE-SEM and TEM analysis showed the formation of spherical particles. Spectroscopic results showed that the addition of the copper ion reduced the band gap energy from 3.10 eV to 2.89 eV. It was observed that, under light, increasing the dopant concentration from 1 % to 3 % resulted in an increase in the bacterial removal rate from 93 % to 96 % and the particulate matter removal rate from 91 % to 94 %. Therefore, Cu-TiO<sub>2</sub> nanoparticles biosynthesized with <em>Aloe vera</em> extract exhibited increased photocatalytic and antibacterial activity, which can be utilized for air purification.</div></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"26 \",\"pages\":\"Article 100375\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542525000244\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542525000244","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Air purification and disinfection by biosynthesized Cu-doped TiO2 nanoparticles with Aloe vera extract
The use of plant extracts for synthesizing nanoparticles has garnered significant attention due to their simplicity, environmental friendliness, and cost-effectiveness. This study synthesized titanium dioxide (titania, TiO2) nanoparticles using Aloe vera extract. Its doping with copper was also investigated to reduce the electron/hole pair recombination rate and improve the photocatalytic activity of titania. Biosynthesized titania nanoparticles were characterized by X-ray diffraction (XRD), Diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). XRD reported the formation of crystals with sizes of 4–7 nm by the Scherrer method and 5–27 nm by the Williamson-Hall method. FE-SEM and TEM analysis showed the formation of spherical particles. Spectroscopic results showed that the addition of the copper ion reduced the band gap energy from 3.10 eV to 2.89 eV. It was observed that, under light, increasing the dopant concentration from 1 % to 3 % resulted in an increase in the bacterial removal rate from 93 % to 96 % and the particulate matter removal rate from 91 % to 94 %. Therefore, Cu-TiO2 nanoparticles biosynthesized with Aloe vera extract exhibited increased photocatalytic and antibacterial activity, which can be utilized for air purification.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.