{"title":"FeCu双金属纳米粒子对氧化石墨烯的调谐修饰,用于宽带微波吸收和减小雷达截面","authors":"Fahimeh Zare-Nazari, Mahdieh Dehghani-Dashtabi, Masoud Mohebbi, Hoda Hekmatara","doi":"10.1016/j.physb.2025.417852","DOIUrl":null,"url":null,"abstract":"<div><div>FeCu bimetallic NPs were synthesized and then, decorated the GO sheets by tunned weight ratios of (2:1) and (3:1). FeCu/GO (2:1) & (3:1) nanocomposites exhibited excellent microwave absorption, attributed to synergy of polarization loss (surface polarization and dipole) and multiple magnetic resonance. The FeCu/GO (2:1) exhibited a minimum reflection loss of −82.83 dB at a frequency of 8.32 GHz, with a thickness of 3 mm. Moreover, the broadest absorption bandwidth was observed for FeCu/GO (3:1) at a thickness of 2.6 mm, which covered the entire X and Ku bands. The radar cross section (RCS) and far field calculation showed that by covering a typical perfect electrical conductor (PEC) sphere with FeCu/GO nanocomposites, the RCS and far field reduced 30–50 dB and 20 dB, respectively, in comparison with uncovered PEC. Consequently, the FeCu/GO nanocomposite have been verified as a promising material for advanced microwave absorber in practical application.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417852"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuned decoration of GO by FeCu bimetallic nanoparticles for wideband microwave absorption and reduced radar cross section\",\"authors\":\"Fahimeh Zare-Nazari, Mahdieh Dehghani-Dashtabi, Masoud Mohebbi, Hoda Hekmatara\",\"doi\":\"10.1016/j.physb.2025.417852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>FeCu bimetallic NPs were synthesized and then, decorated the GO sheets by tunned weight ratios of (2:1) and (3:1). FeCu/GO (2:1) & (3:1) nanocomposites exhibited excellent microwave absorption, attributed to synergy of polarization loss (surface polarization and dipole) and multiple magnetic resonance. The FeCu/GO (2:1) exhibited a minimum reflection loss of −82.83 dB at a frequency of 8.32 GHz, with a thickness of 3 mm. Moreover, the broadest absorption bandwidth was observed for FeCu/GO (3:1) at a thickness of 2.6 mm, which covered the entire X and Ku bands. The radar cross section (RCS) and far field calculation showed that by covering a typical perfect electrical conductor (PEC) sphere with FeCu/GO nanocomposites, the RCS and far field reduced 30–50 dB and 20 dB, respectively, in comparison with uncovered PEC. Consequently, the FeCu/GO nanocomposite have been verified as a promising material for advanced microwave absorber in practical application.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"717 \",\"pages\":\"Article 417852\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092145262500969X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092145262500969X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Tuned decoration of GO by FeCu bimetallic nanoparticles for wideband microwave absorption and reduced radar cross section
FeCu bimetallic NPs were synthesized and then, decorated the GO sheets by tunned weight ratios of (2:1) and (3:1). FeCu/GO (2:1) & (3:1) nanocomposites exhibited excellent microwave absorption, attributed to synergy of polarization loss (surface polarization and dipole) and multiple magnetic resonance. The FeCu/GO (2:1) exhibited a minimum reflection loss of −82.83 dB at a frequency of 8.32 GHz, with a thickness of 3 mm. Moreover, the broadest absorption bandwidth was observed for FeCu/GO (3:1) at a thickness of 2.6 mm, which covered the entire X and Ku bands. The radar cross section (RCS) and far field calculation showed that by covering a typical perfect electrical conductor (PEC) sphere with FeCu/GO nanocomposites, the RCS and far field reduced 30–50 dB and 20 dB, respectively, in comparison with uncovered PEC. Consequently, the FeCu/GO nanocomposite have been verified as a promising material for advanced microwave absorber in practical application.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces