二维空间分数扩散方程的快速四阶格式及其外推

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Shenpei Wang , Tao Wang , Shuyu Yue , Hairong Lian
{"title":"二维空间分数扩散方程的快速四阶格式及其外推","authors":"Shenpei Wang ,&nbsp;Tao Wang ,&nbsp;Shuyu Yue ,&nbsp;Hairong Lian","doi":"10.1016/j.camwa.2025.09.027","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on developing an efficient numerical method for solving two-dimensional Riemann-Liouville space fractional diffusion equations (SFDEs). The quasi-compact difference scheme is to discretize the SFDEs, and then the Richardson extrapolation method is employed to enhance the temporal accuracy to the fourth-order. Alternating direction implicit scheme is applied to decompose the problem into two linear systems. We introduce a fast Preconditioned Stable Bi-Conjugate Gradient algorithm to solve such systems. Moreover, we present the convergence theorem and the spectrum properties of the Strang preconditioner to show the computational efficiency. Finally, numerical experiments are conducted to validate the accuracy and robustness of our methods.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"199 ","pages":"Pages 260-272"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast fourth-order scheme and its extrapolations for two-dimensional space fractional diffusion equations\",\"authors\":\"Shenpei Wang ,&nbsp;Tao Wang ,&nbsp;Shuyu Yue ,&nbsp;Hairong Lian\",\"doi\":\"10.1016/j.camwa.2025.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on developing an efficient numerical method for solving two-dimensional Riemann-Liouville space fractional diffusion equations (SFDEs). The quasi-compact difference scheme is to discretize the SFDEs, and then the Richardson extrapolation method is employed to enhance the temporal accuracy to the fourth-order. Alternating direction implicit scheme is applied to decompose the problem into two linear systems. We introduce a fast Preconditioned Stable Bi-Conjugate Gradient algorithm to solve such systems. Moreover, we present the convergence theorem and the spectrum properties of the Strang preconditioner to show the computational efficiency. Finally, numerical experiments are conducted to validate the accuracy and robustness of our methods.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"199 \",\"pages\":\"Pages 260-272\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125004080\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125004080","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了求解二维Riemann-Liouville空间分数扩散方程(SFDEs)的有效数值方法。采用拟紧差分格式将时域微分方程离散化,然后采用Richardson外推法将时域精度提高到四阶。采用交替方向隐式格式将问题分解为两个线性系统。我们引入了一种快速的预条件稳定双共轭梯度算法来求解这类系统。此外,我们给出了Strang预条件的收敛定理和谱性质,以证明其计算效率。最后,通过数值实验验证了方法的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast fourth-order scheme and its extrapolations for two-dimensional space fractional diffusion equations
This paper focuses on developing an efficient numerical method for solving two-dimensional Riemann-Liouville space fractional diffusion equations (SFDEs). The quasi-compact difference scheme is to discretize the SFDEs, and then the Richardson extrapolation method is employed to enhance the temporal accuracy to the fourth-order. Alternating direction implicit scheme is applied to decompose the problem into two linear systems. We introduce a fast Preconditioned Stable Bi-Conjugate Gradient algorithm to solve such systems. Moreover, we present the convergence theorem and the spectrum properties of the Strang preconditioner to show the computational efficiency. Finally, numerical experiments are conducted to validate the accuracy and robustness of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信