一维常系数线性双曲型方程龙格-库塔谱体积法的稳定性

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Di Lei, Huiyan Li, Jing Niu
{"title":"一维常系数线性双曲型方程龙格-库塔谱体积法的稳定性","authors":"Di Lei,&nbsp;Huiyan Li,&nbsp;Jing Niu","doi":"10.1016/j.aml.2025.109776","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on proving the stability of the Runge–Kutta spectral volume (RKSV) scheme for solving one-dimensional equations, with a specific analysis of the Radau spectral volume (RRSV) and Gauss–Legendre spectral volume (LSV) schemes. By comparing the similarities and discrepancies between the Runge–Kutta spectral volume (RKSV) and Runge–Kutta discontinuous Galerkin (RKDG) schemes, we transform the stability analysis of the RKSV scheme into that of the RKDG scheme-an approach that already possesses a well-established theoretical analysis basis. Our key findings reveal two critical results: first, the Runge–Kutta Radau spectral volume (RKRRSV) scheme is entirely equivalent to the RKDG scheme; second, under the framework of a newly defined norm, the Runge–Kutta Gauss–Legendre spectral volume (RKLSV) scheme yields stability results identical to those of the RKDG scheme. Furthermore, numerical experiments are conducted to validate both the stability and optimal convergence properties of the RKSV scheme, providing empirical support for its theoretical conclusions.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109776"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stability of Runge–Kutta spectral volume methods for 1-D linear hyperbolic equations with constant coefficients\",\"authors\":\"Di Lei,&nbsp;Huiyan Li,&nbsp;Jing Niu\",\"doi\":\"10.1016/j.aml.2025.109776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on proving the stability of the Runge–Kutta spectral volume (RKSV) scheme for solving one-dimensional equations, with a specific analysis of the Radau spectral volume (RRSV) and Gauss–Legendre spectral volume (LSV) schemes. By comparing the similarities and discrepancies between the Runge–Kutta spectral volume (RKSV) and Runge–Kutta discontinuous Galerkin (RKDG) schemes, we transform the stability analysis of the RKSV scheme into that of the RKDG scheme-an approach that already possesses a well-established theoretical analysis basis. Our key findings reveal two critical results: first, the Runge–Kutta Radau spectral volume (RKRRSV) scheme is entirely equivalent to the RKDG scheme; second, under the framework of a newly defined norm, the Runge–Kutta Gauss–Legendre spectral volume (RKLSV) scheme yields stability results identical to those of the RKDG scheme. Furthermore, numerical experiments are conducted to validate both the stability and optimal convergence properties of the RKSV scheme, providing empirical support for its theoretical conclusions.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109776\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089396592500326X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592500326X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文重点证明了龙格-库塔光谱体积(RKSV)格式求解一维方程的稳定性,具体分析了Radau光谱体积(RRSV)和Gauss-Legendre光谱体积(LSV)格式。通过比较龙格-库塔谱体积(RKSV)和龙格-库塔不连续Galerkin (RKDG)格式的异同点,将RKSV格式的稳定性分析转化为RKDG格式的稳定性分析,这种方法已经有了完善的理论分析基础。我们的主要发现揭示了两个关键结果:第一,Runge-Kutta Radau光谱体积(RKRRSV)格式与RKDG格式完全等效;其次,在新定义范数的框架下,Runge-Kutta Gauss-Legendre谱体积(RKLSV)格式得到与RKDG格式相同的稳定性结果。通过数值实验验证了RKSV格式的稳定性和最优收敛性,为其理论结论提供了经验支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stability of Runge–Kutta spectral volume methods for 1-D linear hyperbolic equations with constant coefficients
This paper focuses on proving the stability of the Runge–Kutta spectral volume (RKSV) scheme for solving one-dimensional equations, with a specific analysis of the Radau spectral volume (RRSV) and Gauss–Legendre spectral volume (LSV) schemes. By comparing the similarities and discrepancies between the Runge–Kutta spectral volume (RKSV) and Runge–Kutta discontinuous Galerkin (RKDG) schemes, we transform the stability analysis of the RKSV scheme into that of the RKDG scheme-an approach that already possesses a well-established theoretical analysis basis. Our key findings reveal two critical results: first, the Runge–Kutta Radau spectral volume (RKRRSV) scheme is entirely equivalent to the RKDG scheme; second, under the framework of a newly defined norm, the Runge–Kutta Gauss–Legendre spectral volume (RKLSV) scheme yields stability results identical to those of the RKDG scheme. Furthermore, numerical experiments are conducted to validate both the stability and optimal convergence properties of the RKSV scheme, providing empirical support for its theoretical conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信