具有政府政策的随机状态切换传输模型的动力学分析

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Hongjie Fan , Kai Wang , Yanling Zhu
{"title":"具有政府政策的随机状态切换传输模型的动力学分析","authors":"Hongjie Fan ,&nbsp;Kai Wang ,&nbsp;Yanling Zhu","doi":"10.1016/j.aml.2025.109771","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose and investigate a stochastic SEQIR epidemic model with Markovian regime-switching. Governmental policies and their implementation efficiency are incorporated by a generalized incidence function of the susceptible class. Using the Lyapunov method, we illustrate the existence and uniqueness of the globally positive solution to the stochastic model. Furthermore, we also analyze the dynamical behaviors of the disease, and derive sufficient conditions for its extinction and persistence in mean. Finally, numerical simulations are presented to verify the theoretical findings.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109771"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics analysis of a stochastic regime-switching transmission model with governmental policy\",\"authors\":\"Hongjie Fan ,&nbsp;Kai Wang ,&nbsp;Yanling Zhu\",\"doi\":\"10.1016/j.aml.2025.109771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose and investigate a stochastic SEQIR epidemic model with Markovian regime-switching. Governmental policies and their implementation efficiency are incorporated by a generalized incidence function of the susceptible class. Using the Lyapunov method, we illustrate the existence and uniqueness of the globally positive solution to the stochastic model. Furthermore, we also analyze the dynamical behaviors of the disease, and derive sufficient conditions for its extinction and persistence in mean. Finally, numerical simulations are presented to verify the theoretical findings.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109771\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925003210\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925003210","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并研究了一个具有马尔可夫状态切换的随机SEQIR流行病模型。政府政策及其执行效率由一个易受影响阶层的广义关联函数来体现。利用Lyapunov方法,我们证明了随机模型全局正解的存在唯一性。此外,我们还分析了疾病的动力学行为,并推导了其灭绝和平均持续的充分条件。最后通过数值模拟对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics analysis of a stochastic regime-switching transmission model with governmental policy
In this paper, we propose and investigate a stochastic SEQIR epidemic model with Markovian regime-switching. Governmental policies and their implementation efficiency are incorporated by a generalized incidence function of the susceptible class. Using the Lyapunov method, we illustrate the existence and uniqueness of the globally positive solution to the stochastic model. Furthermore, we also analyze the dynamical behaviors of the disease, and derive sufficient conditions for its extinction and persistence in mean. Finally, numerical simulations are presented to verify the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信