Rui Wang , Juntao Sun , Sofiane Khoutir , Han-Su Zhang
{"title":"具有质量亚临界非线性的非自治Kirchhoff方程的多重归一化解","authors":"Rui Wang , Juntao Sun , Sofiane Khoutir , Han-Su Zhang","doi":"10.1016/j.aml.2025.109778","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with the multiplicity of normalized solutions for a class of Kirchhoff equations with the nonlinearity <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>ɛ</mi><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, where <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mn>4</mn><mo>≤</mo><mi>p</mi><mo><</mo><mn>14</mn><mo>/</mo><mn>3</mn></mrow></math></span>. We explore the relationship between the number of solutions and the shape of the weight function <span><math><mi>h</mi></math></span>.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"173 ","pages":"Article 109778"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple normalized solutions for non-autonomous Kirchhoff equations with mass-subcritical nonlinearity in R3\",\"authors\":\"Rui Wang , Juntao Sun , Sofiane Khoutir , Han-Su Zhang\",\"doi\":\"10.1016/j.aml.2025.109778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we are concerned with the multiplicity of normalized solutions for a class of Kirchhoff equations with the nonlinearity <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>ɛ</mi><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, where <span><math><mrow><mi>ɛ</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mn>4</mn><mo>≤</mo><mi>p</mi><mo><</mo><mn>14</mn><mo>/</mo><mn>3</mn></mrow></math></span>. We explore the relationship between the number of solutions and the shape of the weight function <span><math><mi>h</mi></math></span>.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"173 \",\"pages\":\"Article 109778\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925003283\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925003283","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Multiple normalized solutions for non-autonomous Kirchhoff equations with mass-subcritical nonlinearity in R3
In this paper, we are concerned with the multiplicity of normalized solutions for a class of Kirchhoff equations with the nonlinearity in , where and . We explore the relationship between the number of solutions and the shape of the weight function .
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.