Jingqi Zhao , Xue Liu , Yong Pang , Haoge Luo , Jie Zhang , Chen Shao
{"title":"二氢辣椒素的雄激素受体抑制活性:来自体外、体内和计算机研究的见解","authors":"Jingqi Zhao , Xue Liu , Yong Pang , Haoge Luo , Jie Zhang , Chen Shao","doi":"10.1016/j.jsbmb.2025.106872","DOIUrl":null,"url":null,"abstract":"<div><div>As a natural capsaicinoid from <em>Capsicum annuum</em> L., dihydrocapsaicin is well known for its anti-obesity property by reducing fat accumulation in adipose tissue. The androgen receptor (AR) is essential for both health and disease in humans and is the main focus for prostate cancer treatment. This study seeks to explore how dihydrocapsaicin inhibits the AR in human prostate cancer cell lines, aiming to offer a new natural product-derived AR inhibitor for the clinical management of prostate-related conditions. At first, it was observed that dihydrocapsaicin can induce proliferation suppression in human prostate cancer cells by hindering the cell cycle at the G0/G1 phase. In addition, dihydrocapsaicin probably inhibited AR activity by blocking its movement from the cytoplasm to the nucleus through binding to the AR-LBD, highlighting its potential as an effective inhibitor. From a mechanistic perspective, dihydrocapsaicin facilitated AR release from a stabilizing chaperone complex and enhanced its ubiquitination by E3 ligases, resulting in AR partial degradation via the ubiquitin-proteasome pathway. Our study on the molecular mechanisms behind dihydrocapsaicin's inhibitory effects on the AR revealed that it not only hindered the growth of prostate cancer cells but also reduced tumor growth <em>in vivo</em>. These results offer both experimental evidence and a theoretical basis for the thorough development of AR inhibitors, emphasizing dihydrocapsaicin's potential for application in functional foods or nutritional supplements targeting prostatic disorders.</div></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":"255 ","pages":"Article 106872"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Androgen receptor inhibitory activity of dihydrocapsaicin: Insights from in vitro, in vivo and in silico studies\",\"authors\":\"Jingqi Zhao , Xue Liu , Yong Pang , Haoge Luo , Jie Zhang , Chen Shao\",\"doi\":\"10.1016/j.jsbmb.2025.106872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a natural capsaicinoid from <em>Capsicum annuum</em> L., dihydrocapsaicin is well known for its anti-obesity property by reducing fat accumulation in adipose tissue. The androgen receptor (AR) is essential for both health and disease in humans and is the main focus for prostate cancer treatment. This study seeks to explore how dihydrocapsaicin inhibits the AR in human prostate cancer cell lines, aiming to offer a new natural product-derived AR inhibitor for the clinical management of prostate-related conditions. At first, it was observed that dihydrocapsaicin can induce proliferation suppression in human prostate cancer cells by hindering the cell cycle at the G0/G1 phase. In addition, dihydrocapsaicin probably inhibited AR activity by blocking its movement from the cytoplasm to the nucleus through binding to the AR-LBD, highlighting its potential as an effective inhibitor. From a mechanistic perspective, dihydrocapsaicin facilitated AR release from a stabilizing chaperone complex and enhanced its ubiquitination by E3 ligases, resulting in AR partial degradation via the ubiquitin-proteasome pathway. Our study on the molecular mechanisms behind dihydrocapsaicin's inhibitory effects on the AR revealed that it not only hindered the growth of prostate cancer cells but also reduced tumor growth <em>in vivo</em>. These results offer both experimental evidence and a theoretical basis for the thorough development of AR inhibitors, emphasizing dihydrocapsaicin's potential for application in functional foods or nutritional supplements targeting prostatic disorders.</div></div>\",\"PeriodicalId\":51106,\"journal\":{\"name\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"volume\":\"255 \",\"pages\":\"Article 106872\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960076025002006\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076025002006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Androgen receptor inhibitory activity of dihydrocapsaicin: Insights from in vitro, in vivo and in silico studies
As a natural capsaicinoid from Capsicum annuum L., dihydrocapsaicin is well known for its anti-obesity property by reducing fat accumulation in adipose tissue. The androgen receptor (AR) is essential for both health and disease in humans and is the main focus for prostate cancer treatment. This study seeks to explore how dihydrocapsaicin inhibits the AR in human prostate cancer cell lines, aiming to offer a new natural product-derived AR inhibitor for the clinical management of prostate-related conditions. At first, it was observed that dihydrocapsaicin can induce proliferation suppression in human prostate cancer cells by hindering the cell cycle at the G0/G1 phase. In addition, dihydrocapsaicin probably inhibited AR activity by blocking its movement from the cytoplasm to the nucleus through binding to the AR-LBD, highlighting its potential as an effective inhibitor. From a mechanistic perspective, dihydrocapsaicin facilitated AR release from a stabilizing chaperone complex and enhanced its ubiquitination by E3 ligases, resulting in AR partial degradation via the ubiquitin-proteasome pathway. Our study on the molecular mechanisms behind dihydrocapsaicin's inhibitory effects on the AR revealed that it not only hindered the growth of prostate cancer cells but also reduced tumor growth in vivo. These results offer both experimental evidence and a theoretical basis for the thorough development of AR inhibitors, emphasizing dihydrocapsaicin's potential for application in functional foods or nutritional supplements targeting prostatic disorders.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.