探索声激波下碲化锌的介电开关:结构与光学视角

IF 2.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Oviya Sekar , F. Irine Maria Bincy , M. Ehthishamul Haque , M. Jose , Ikhyun Kim , S.A. Martin Britto Dhas
{"title":"探索声激波下碲化锌的介电开关:结构与光学视角","authors":"Oviya Sekar ,&nbsp;F. Irine Maria Bincy ,&nbsp;M. Ehthishamul Haque ,&nbsp;M. Jose ,&nbsp;Ikhyun Kim ,&nbsp;S.A. Martin Britto Dhas","doi":"10.1016/j.mtla.2025.102564","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the dielectric switching behavior of zinc telluride (ZnTe) subjected to controlled acoustic shock-wave loading using a semi-automatic Reddy tube. Dielectric measurements were conducted on samples exposed to 0, 100, 200, 300, and 400 shock pulses. The dielectric constant (ε<sub>r</sub>) showed strong frequency dependence, with ε<sub>r</sub> decreasing from 264 (pristine at 100 Hz) to 51.3 (100 shocks), followed by increases to 142 (300 shocks) and 228 (400 shocks). This enhancement at 300 shocks corresponds to a shock-induced phase transition from the cubic F-43m to the Fm-3m phase. The dielectric loss (tan δ) initially ranged from 0.0155 (pristine at 100 Hz) to 0.1598 (100 shocks) but decreased sharply to 0.4326 (300 shocks) and further to 0.0230 (400 shocks), demonstrating dielectric switching behavior. Impedance spectroscopy revealed the highest Z′ and Z″ at 300 shocks, indicating maximum resistive and capacitive contributions due to defect density and interfacial polarization. An electric modulus analysis confirmed non-Debye relaxation with relaxation peak shifts and broadening of arcs, while the conductivity increased significantly to 7 × 10<sup>-6</sup> S/cm at 400 shocks. These findings confirm that ZnTe exhibits tunable dielectric switching under shock-induced stress, making it a promising candidate for adaptive high-frequency dielectric and capacitive device applications.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"44 ","pages":"Article 102564"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring dielectric switching in zinc telluride during exposure to an acoustic shock wave: A structural and optical perspective\",\"authors\":\"Oviya Sekar ,&nbsp;F. Irine Maria Bincy ,&nbsp;M. Ehthishamul Haque ,&nbsp;M. Jose ,&nbsp;Ikhyun Kim ,&nbsp;S.A. Martin Britto Dhas\",\"doi\":\"10.1016/j.mtla.2025.102564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the dielectric switching behavior of zinc telluride (ZnTe) subjected to controlled acoustic shock-wave loading using a semi-automatic Reddy tube. Dielectric measurements were conducted on samples exposed to 0, 100, 200, 300, and 400 shock pulses. The dielectric constant (ε<sub>r</sub>) showed strong frequency dependence, with ε<sub>r</sub> decreasing from 264 (pristine at 100 Hz) to 51.3 (100 shocks), followed by increases to 142 (300 shocks) and 228 (400 shocks). This enhancement at 300 shocks corresponds to a shock-induced phase transition from the cubic F-43m to the Fm-3m phase. The dielectric loss (tan δ) initially ranged from 0.0155 (pristine at 100 Hz) to 0.1598 (100 shocks) but decreased sharply to 0.4326 (300 shocks) and further to 0.0230 (400 shocks), demonstrating dielectric switching behavior. Impedance spectroscopy revealed the highest Z′ and Z″ at 300 shocks, indicating maximum resistive and capacitive contributions due to defect density and interfacial polarization. An electric modulus analysis confirmed non-Debye relaxation with relaxation peak shifts and broadening of arcs, while the conductivity increased significantly to 7 × 10<sup>-6</sup> S/cm at 400 shocks. These findings confirm that ZnTe exhibits tunable dielectric switching under shock-induced stress, making it a promising candidate for adaptive high-frequency dielectric and capacitive device applications.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"44 \",\"pages\":\"Article 102564\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152925002327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925002327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用半自动Reddy管研究了受控声激波载荷下碲化锌(ZnTe)的介电开关行为。对暴露于0,100,200,300和400个冲击脉冲下的样品进行介电测量。介电常数(εr)表现出较强的频率依赖性,εr从264 (100 Hz时的原始值)下降到51.3(100次冲击时),随后分别上升到142(300次冲击时)和228(400次冲击时)。300次激波下的这种增强与激波诱导的从立方F-43m到Fm-3m相的相变相对应。介质损耗(tan δ)最初的范围从0.0155 (100 Hz的原始)到0.1598(100次冲击),但急剧下降到0.4326(300次冲击),进一步下降到0.0230(400次冲击),显示出介电开关行为。阻抗谱显示,在300次冲击下,z0′和z0″最大,表明缺陷密度和界面极化对电阻和电容的贡献最大。电模量分析证实了非debye弛豫,弛豫峰位移和电弧变宽,而电导率在400次冲击下显著增加到7 × 10-6 S/cm。这些发现证实了ZnTe在冲击诱导应力下具有可调谐的介电开关,使其成为自适应高频介电和电容器件应用的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring dielectric switching in zinc telluride during exposure to an acoustic shock wave: A structural and optical perspective

Exploring dielectric switching in zinc telluride during exposure to an acoustic shock wave: A structural and optical perspective
This study examines the dielectric switching behavior of zinc telluride (ZnTe) subjected to controlled acoustic shock-wave loading using a semi-automatic Reddy tube. Dielectric measurements were conducted on samples exposed to 0, 100, 200, 300, and 400 shock pulses. The dielectric constant (εr) showed strong frequency dependence, with εr decreasing from 264 (pristine at 100 Hz) to 51.3 (100 shocks), followed by increases to 142 (300 shocks) and 228 (400 shocks). This enhancement at 300 shocks corresponds to a shock-induced phase transition from the cubic F-43m to the Fm-3m phase. The dielectric loss (tan δ) initially ranged from 0.0155 (pristine at 100 Hz) to 0.1598 (100 shocks) but decreased sharply to 0.4326 (300 shocks) and further to 0.0230 (400 shocks), demonstrating dielectric switching behavior. Impedance spectroscopy revealed the highest Z′ and Z″ at 300 shocks, indicating maximum resistive and capacitive contributions due to defect density and interfacial polarization. An electric modulus analysis confirmed non-Debye relaxation with relaxation peak shifts and broadening of arcs, while the conductivity increased significantly to 7 × 10-6 S/cm at 400 shocks. These findings confirm that ZnTe exhibits tunable dielectric switching under shock-induced stress, making it a promising candidate for adaptive high-frequency dielectric and capacitive device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信