Cu/Mg共掺杂ZnO纳米粒子缺陷的结构、力学和生物医学影响

IF 3 Q2 PHYSICS, CONDENSED MATTER
Kenan Senturk
{"title":"Cu/Mg共掺杂ZnO纳米粒子缺陷的结构、力学和生物医学影响","authors":"Kenan Senturk","doi":"10.1016/j.micrna.2025.208362","DOIUrl":null,"url":null,"abstract":"<div><div>Zn<sub>0.99-x</sub>Cu<sub>0.01</sub>Mg<sub>x</sub>O (x = 0–0.05) nanoparticles were synthesized by a sol–gel route and examined to relate doping-induced lattice defects to biocompatibility for prospective biomedical use. X-ray diffraction confirmed single-phase wurtzite with no secondary phases, while Williamson–Hall models provided crystallite size and lattice microstrain/stress, separating strain from size effects. Photoluminescence (UV–visible) showed an Mg-dependent defect redistribution suppression of the green band (V<sub>O</sub>) with concomitant changes in Zn<sub>i</sub>, V<sub>Zn</sub>, and O<sub>i</sub> centers. SEM/EDS verified the expected composition and quasi-spherical agglomerated morphology. Hemolysis assays on human erythrocytes revealed a monotonic decrease in lysis with increasing Mg; samples with x ≥ 0.04 were non-hemolytic at 1.0 mg/mL (ISO &lt;5 %). Overall, Mg-enabled defect passivation particularly V<sub>O</sub> suppression correlates with improved blood compatibility, indicating that Cu/Mg co-doping is a practical lever to tailor ZnO nanoparticles for blood-contacting coatings, sensors, and implant interfaces.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208362"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, mechanical and biomedical impacts of defects in Cu/Mg Co-doped ZnO nanoparticles\",\"authors\":\"Kenan Senturk\",\"doi\":\"10.1016/j.micrna.2025.208362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zn<sub>0.99-x</sub>Cu<sub>0.01</sub>Mg<sub>x</sub>O (x = 0–0.05) nanoparticles were synthesized by a sol–gel route and examined to relate doping-induced lattice defects to biocompatibility for prospective biomedical use. X-ray diffraction confirmed single-phase wurtzite with no secondary phases, while Williamson–Hall models provided crystallite size and lattice microstrain/stress, separating strain from size effects. Photoluminescence (UV–visible) showed an Mg-dependent defect redistribution suppression of the green band (V<sub>O</sub>) with concomitant changes in Zn<sub>i</sub>, V<sub>Zn</sub>, and O<sub>i</sub> centers. SEM/EDS verified the expected composition and quasi-spherical agglomerated morphology. Hemolysis assays on human erythrocytes revealed a monotonic decrease in lysis with increasing Mg; samples with x ≥ 0.04 were non-hemolytic at 1.0 mg/mL (ISO &lt;5 %). Overall, Mg-enabled defect passivation particularly V<sub>O</sub> suppression correlates with improved blood compatibility, indicating that Cu/Mg co-doping is a practical lever to tailor ZnO nanoparticles for blood-contacting coatings, sensors, and implant interfaces.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"208 \",\"pages\":\"Article 208362\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325002912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

采用溶胶-凝胶法合成了Zn0.99-xCu0.01MgxO (x = 0-0.05)纳米粒子,并研究了掺杂诱导的晶格缺陷与生物相容性之间的关系。x射线衍射证实了单相纤锌矿没有二次相,而Williamson-Hall模型提供了晶体尺寸和晶格微应变/应力,将应变与尺寸效应分离开来。光致发光(紫外可见)显示出镁依赖的绿带(VO)缺陷再分布抑制,并伴随Zni, VZn和Oi中心的变化。SEM/EDS验证了预期的成分和准球形团聚形貌。人红细胞溶血实验显示,随着Mg的增加,溶血量单调下降;x≥0.04的样品在1.0 mg/mL (ISO < 5%)时无溶血作用。总的来说,Mg使缺陷钝化,特别是VO抑制与血液相容性的改善相关,表明Cu/Mg共掺杂是定制ZnO纳米颗粒用于血液接触涂层,传感器和植入物界面的实用手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural, mechanical and biomedical impacts of defects in Cu/Mg Co-doped ZnO nanoparticles

Structural, mechanical and biomedical impacts of defects in Cu/Mg Co-doped ZnO nanoparticles
Zn0.99-xCu0.01MgxO (x = 0–0.05) nanoparticles were synthesized by a sol–gel route and examined to relate doping-induced lattice defects to biocompatibility for prospective biomedical use. X-ray diffraction confirmed single-phase wurtzite with no secondary phases, while Williamson–Hall models provided crystallite size and lattice microstrain/stress, separating strain from size effects. Photoluminescence (UV–visible) showed an Mg-dependent defect redistribution suppression of the green band (VO) with concomitant changes in Zni, VZn, and Oi centers. SEM/EDS verified the expected composition and quasi-spherical agglomerated morphology. Hemolysis assays on human erythrocytes revealed a monotonic decrease in lysis with increasing Mg; samples with x ≥ 0.04 were non-hemolytic at 1.0 mg/mL (ISO <5 %). Overall, Mg-enabled defect passivation particularly VO suppression correlates with improved blood compatibility, indicating that Cu/Mg co-doping is a practical lever to tailor ZnO nanoparticles for blood-contacting coatings, sensors, and implant interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信