Ilya Ezhov , Ivan Gorbov , Pavel Vishniakov , Vladislav Chernyavsky , Denis Olkhovskii , Denis Nazarov , Lev Markov , Irina Smirnova , Rajesh Kumar , Maxim Maximov
{"title":"电致变色用NiCp2和O3原子层沉积制备氧化镍薄膜的研究","authors":"Ilya Ezhov , Ivan Gorbov , Pavel Vishniakov , Vladislav Chernyavsky , Denis Olkhovskii , Denis Nazarov , Lev Markov , Irina Smirnova , Rajesh Kumar , Maxim Maximov","doi":"10.1016/j.vacuum.2025.114774","DOIUrl":null,"url":null,"abstract":"<div><div>The development of smart electrochromic windows capable of adjusting the transmission of optical radiation has the potential to reduce peak energy consumption for the cooling and heating of buildings. Nevertheless, this technology still requires further development and the implementation of new approaches to mass production. For this purpose, a novel approach to obtain electrochromic material by the atomic layer deposition (ALD) method has been demonstrated in this research. This study explores the ALD method for NiO synthesis using bis(cyclopentadienyl) nickel (II) and ozone by comparing two evaporator types: “Bubbler” and “Vapor.” The “Bubbler type” showed better performance, with a growth rate of 0.025 nm/cycle (0.019 nm/cycle for “Vapor type”) and lower non-uniformity (19 %) at 250 °C. Optimal deposition occurred between 225 and 275 °C, yielding a stable growth rate of 0.024–0.025 nm/cycle. The films consisted mainly of NiO crystals (<em>Fm3m</em>) with traces of Ni(OH)<sub>2</sub>/NiOOH. A 15 nm thick NiO layer on porous ITO demonstrated promising electrochromic properties: 37 % transmittance modulation, 42.6 cm<sup>2</sup>/C colouring efficiency, and response times of 3.6 s (colouring) and 5.4 s (bleaching). These results highlight the potential for scalable ALD-based production of high-performance electrochromic materials.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"242 ","pages":"Article 114774"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the growth of nickel oxide films using atomic layer deposition of NiCp2 and O3 for electrochromic applications\",\"authors\":\"Ilya Ezhov , Ivan Gorbov , Pavel Vishniakov , Vladislav Chernyavsky , Denis Olkhovskii , Denis Nazarov , Lev Markov , Irina Smirnova , Rajesh Kumar , Maxim Maximov\",\"doi\":\"10.1016/j.vacuum.2025.114774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of smart electrochromic windows capable of adjusting the transmission of optical radiation has the potential to reduce peak energy consumption for the cooling and heating of buildings. Nevertheless, this technology still requires further development and the implementation of new approaches to mass production. For this purpose, a novel approach to obtain electrochromic material by the atomic layer deposition (ALD) method has been demonstrated in this research. This study explores the ALD method for NiO synthesis using bis(cyclopentadienyl) nickel (II) and ozone by comparing two evaporator types: “Bubbler” and “Vapor.” The “Bubbler type” showed better performance, with a growth rate of 0.025 nm/cycle (0.019 nm/cycle for “Vapor type”) and lower non-uniformity (19 %) at 250 °C. Optimal deposition occurred between 225 and 275 °C, yielding a stable growth rate of 0.024–0.025 nm/cycle. The films consisted mainly of NiO crystals (<em>Fm3m</em>) with traces of Ni(OH)<sub>2</sub>/NiOOH. A 15 nm thick NiO layer on porous ITO demonstrated promising electrochromic properties: 37 % transmittance modulation, 42.6 cm<sup>2</sup>/C colouring efficiency, and response times of 3.6 s (colouring) and 5.4 s (bleaching). These results highlight the potential for scalable ALD-based production of high-performance electrochromic materials.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"242 \",\"pages\":\"Article 114774\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X2500764X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X2500764X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of the growth of nickel oxide films using atomic layer deposition of NiCp2 and O3 for electrochromic applications
The development of smart electrochromic windows capable of adjusting the transmission of optical radiation has the potential to reduce peak energy consumption for the cooling and heating of buildings. Nevertheless, this technology still requires further development and the implementation of new approaches to mass production. For this purpose, a novel approach to obtain electrochromic material by the atomic layer deposition (ALD) method has been demonstrated in this research. This study explores the ALD method for NiO synthesis using bis(cyclopentadienyl) nickel (II) and ozone by comparing two evaporator types: “Bubbler” and “Vapor.” The “Bubbler type” showed better performance, with a growth rate of 0.025 nm/cycle (0.019 nm/cycle for “Vapor type”) and lower non-uniformity (19 %) at 250 °C. Optimal deposition occurred between 225 and 275 °C, yielding a stable growth rate of 0.024–0.025 nm/cycle. The films consisted mainly of NiO crystals (Fm3m) with traces of Ni(OH)2/NiOOH. A 15 nm thick NiO layer on porous ITO demonstrated promising electrochromic properties: 37 % transmittance modulation, 42.6 cm2/C colouring efficiency, and response times of 3.6 s (colouring) and 5.4 s (bleaching). These results highlight the potential for scalable ALD-based production of high-performance electrochromic materials.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.