在除数为零的情况下,平方根定律不成立

IF 0.7 3区 数学 Q3 MATHEMATICS
Nathaniel Kingsbury-Neuschotz
{"title":"在除数为零的情况下,平方根定律不成立","authors":"Nathaniel Kingsbury-Neuschotz","doi":"10.1016/j.jnt.2025.08.020","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be a finite ring (with identity, not necessarily commutative) and define the paraboloid <span><math><mi>P</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>}</mo></math></span>. Suppose that for a sequence of finite rings of size tending to infinity, the Fourier transform of <em>P</em> satisfies a square-root law of the form <span><math><mo>|</mo><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ψ</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mi>C</mi><mo>|</mo><mi>R</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup><mo>|</mo><mi>P</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for all nontrivial additive characters <em>ψ</em>, with <em>C</em> some fixed constant (for instance, if <em>R</em> is a finite field, this bound will be satisfied with <span><math><mi>C</mi><mo>=</mo><mn>1</mn></math></span>). Then all but finitely many of the rings are fields.</div><div>Most of our argument works in greater generality: let <em>f</em> be a polynomial with integer coefficients in <span><math><mi>d</mi><mo>−</mo><mn>1</mn></math></span> variables, with a fixed order of variable multiplications (so that it defines a function <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span> even when <em>R</em> is noncommutative), and set <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>}</mo></math></span>. If (for a sequence of finite rings of size tending to infinity) we have a square root law for the Fourier transform of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, then all but finitely many of the rings are fields or matrix rings of small dimension. We also describe how our techniques can establish that certain varieties do not satisfy a square root law even over finite fields.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"280 ","pages":"Pages 481-505"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The square-root law does not hold in the presence of zero divisors\",\"authors\":\"Nathaniel Kingsbury-Neuschotz\",\"doi\":\"10.1016/j.jnt.2025.08.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>R</em> be a finite ring (with identity, not necessarily commutative) and define the paraboloid <span><math><mi>P</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><mo>…</mo><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>}</mo></math></span>. Suppose that for a sequence of finite rings of size tending to infinity, the Fourier transform of <em>P</em> satisfies a square-root law of the form <span><math><mo>|</mo><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>ψ</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mi>C</mi><mo>|</mo><mi>R</mi><msup><mrow><mo>|</mo></mrow><mrow><mo>−</mo><mi>d</mi></mrow></msup><mo>|</mo><mi>P</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for all nontrivial additive characters <em>ψ</em>, with <em>C</em> some fixed constant (for instance, if <em>R</em> is a finite field, this bound will be satisfied with <span><math><mi>C</mi><mo>=</mo><mn>1</mn></math></span>). Then all but finitely many of the rings are fields.</div><div>Most of our argument works in greater generality: let <em>f</em> be a polynomial with integer coefficients in <span><math><mi>d</mi><mo>−</mo><mn>1</mn></math></span> variables, with a fixed order of variable multiplications (so that it defines a function <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span> even when <em>R</em> is noncommutative), and set <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>}</mo></math></span>. If (for a sequence of finite rings of size tending to infinity) we have a square root law for the Fourier transform of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>, then all but finitely many of the rings are fields or matrix rings of small dimension. We also describe how our techniques can establish that certain varieties do not satisfy a square root law even over finite fields.</div></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"280 \",\"pages\":\"Pages 481-505\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X25002549\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25002549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R是一个有限环(有恒等,不一定交换),定义抛物面P={(x1,…,xd)∈Rd|xd=x12+…+xd−12}。假设对于一个大小趋近于无穷的有限环序列,P的傅里叶变换满足一个平方根定律,对于所有非平凡的可加性字符ψ,其形式为|P φ (ψ)|≤C|R|−d|P|12,且C为固定常数(例如,如果R是一个有限域,则该界满足C=1)。那么几乎所有的环都是场。我们的大多数论证都适用于更广泛的情况:设f是一个具有d−1个变量的整数系数的多项式,具有固定的变量乘法顺序(因此它定义了一个函数Rd−1→R,即使R是不可交换的),并且设Vf={(x1,…,xd)∈Rd|xd=f(x1,…,xd - 1)}。如果(对于大小趋近于无穷大的有限环序列)我们有Vf的傅里叶变换的平方根定律,那么除了有限多个环外,所有环都是小维的场或矩阵环。我们还描述了我们的技术如何能够确定某些品种即使在有限域上也不满足平方根定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The square-root law does not hold in the presence of zero divisors
Let R be a finite ring (with identity, not necessarily commutative) and define the paraboloid P={(x1,,xd)Rd|xd=x12++xd12}. Suppose that for a sequence of finite rings of size tending to infinity, the Fourier transform of P satisfies a square-root law of the form |Pˆ(ψ)|C|R|d|P|12 for all nontrivial additive characters ψ, with C some fixed constant (for instance, if R is a finite field, this bound will be satisfied with C=1). Then all but finitely many of the rings are fields.
Most of our argument works in greater generality: let f be a polynomial with integer coefficients in d1 variables, with a fixed order of variable multiplications (so that it defines a function Rd1R even when R is noncommutative), and set Vf={(x1,,xd)Rd|xd=f(x1,,xd1)}. If (for a sequence of finite rings of size tending to infinity) we have a square root law for the Fourier transform of Vf, then all but finitely many of the rings are fields or matrix rings of small dimension. We also describe how our techniques can establish that certain varieties do not satisfy a square root law even over finite fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信