Yi Sun , Liping Yuan , Liandon Tang , Youhua Fan , Jiajing Yu , Jianzheng Qiao , Zizhi Huang
{"title":"硅钨酸插层ZnAl-LDH与ifr在环氧聚酰胺涂层上的协同阻燃和保温性能","authors":"Yi Sun , Liping Yuan , Liandon Tang , Youhua Fan , Jiajing Yu , Jianzheng Qiao , Zizhi Huang","doi":"10.1016/j.porgcoat.2025.109707","DOIUrl":null,"url":null,"abstract":"<div><div>Epoxy resin, known for its excellent mechanical properties, chemical resistance, and dimensional stability, has been widely employed in advanced electronic packaging, high-performance coatings, and aerospace engineering. However, its inherent flammability has limited its applications. To address this issue, a ZnAl-NO<sub>3</sub>-LDH was synthesized via co-precipitation and subsequently modified by ion-exchange intercalation with [SiW<sub>12</sub>O<sub>40</sub>]<sup>4−</sup> to form ZnAl-SiW<sub>12</sub>O<sub>40</sub>-LDH (SiW-LDH). The obtained SiW-LDH was then combined with AMP intumescent flame retardants composed of APP, MEL, and PER to enhance the fire resistance properties of the epoxy–polyamide resin (EP). The resulting 2 %SiW-LDH/AMP/EP coatings containing 24.5 wt% AMP and 2 wt% SiW-LDH exhibited excellent flame-retardant properties, achieving an LOI value of 35.3 % and a UL-94 V-0 rating. Additionally, the total heat release (THR) and total smoke production (TSP) recorded during cone calorimeter tests decreased by 69.7 % and 70.9 %, respectively. Moreover, further analysis of the residual char of SiW-LDH/AMP/EP demonstrated that the catalytic carbonization co-effect of AMP and SiW-LDH promoted the formation of a dense and continuous char layer with aromatic structures containing Al<img>O, W<img>O, Si<img>O, W<img>C, Zn<sup>2+</sup>, P–O–C, and P<img>N moieties. Notably, these structures enhanced the flame retardancy, smoke suppression, charring, and thermal insulation properties of the EP. These properties also originated from the dilution of non-combustible gases and the heat-absorbing action upon the thermal decomposition of SiW-LDH/AMP during combustion. Overall, these results demonstrate that the incorporation of SiW-LDH and AMP into epoxy matrices effectively enhances the flame retardancy and thermal insulation properties of polymer systems.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"210 ","pages":"Article 109707"},"PeriodicalIF":7.3000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic flame retardancy and thermal insulation properties of silicotungstic acid intercalated ZnAl-LDH with IFRs on epoxy-polyamide coatings\",\"authors\":\"Yi Sun , Liping Yuan , Liandon Tang , Youhua Fan , Jiajing Yu , Jianzheng Qiao , Zizhi Huang\",\"doi\":\"10.1016/j.porgcoat.2025.109707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epoxy resin, known for its excellent mechanical properties, chemical resistance, and dimensional stability, has been widely employed in advanced electronic packaging, high-performance coatings, and aerospace engineering. However, its inherent flammability has limited its applications. To address this issue, a ZnAl-NO<sub>3</sub>-LDH was synthesized via co-precipitation and subsequently modified by ion-exchange intercalation with [SiW<sub>12</sub>O<sub>40</sub>]<sup>4−</sup> to form ZnAl-SiW<sub>12</sub>O<sub>40</sub>-LDH (SiW-LDH). The obtained SiW-LDH was then combined with AMP intumescent flame retardants composed of APP, MEL, and PER to enhance the fire resistance properties of the epoxy–polyamide resin (EP). The resulting 2 %SiW-LDH/AMP/EP coatings containing 24.5 wt% AMP and 2 wt% SiW-LDH exhibited excellent flame-retardant properties, achieving an LOI value of 35.3 % and a UL-94 V-0 rating. Additionally, the total heat release (THR) and total smoke production (TSP) recorded during cone calorimeter tests decreased by 69.7 % and 70.9 %, respectively. Moreover, further analysis of the residual char of SiW-LDH/AMP/EP demonstrated that the catalytic carbonization co-effect of AMP and SiW-LDH promoted the formation of a dense and continuous char layer with aromatic structures containing Al<img>O, W<img>O, Si<img>O, W<img>C, Zn<sup>2+</sup>, P–O–C, and P<img>N moieties. Notably, these structures enhanced the flame retardancy, smoke suppression, charring, and thermal insulation properties of the EP. These properties also originated from the dilution of non-combustible gases and the heat-absorbing action upon the thermal decomposition of SiW-LDH/AMP during combustion. Overall, these results demonstrate that the incorporation of SiW-LDH and AMP into epoxy matrices effectively enhances the flame retardancy and thermal insulation properties of polymer systems.</div></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":\"210 \",\"pages\":\"Article 109707\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944025006563\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944025006563","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Synergistic flame retardancy and thermal insulation properties of silicotungstic acid intercalated ZnAl-LDH with IFRs on epoxy-polyamide coatings
Epoxy resin, known for its excellent mechanical properties, chemical resistance, and dimensional stability, has been widely employed in advanced electronic packaging, high-performance coatings, and aerospace engineering. However, its inherent flammability has limited its applications. To address this issue, a ZnAl-NO3-LDH was synthesized via co-precipitation and subsequently modified by ion-exchange intercalation with [SiW12O40]4− to form ZnAl-SiW12O40-LDH (SiW-LDH). The obtained SiW-LDH was then combined with AMP intumescent flame retardants composed of APP, MEL, and PER to enhance the fire resistance properties of the epoxy–polyamide resin (EP). The resulting 2 %SiW-LDH/AMP/EP coatings containing 24.5 wt% AMP and 2 wt% SiW-LDH exhibited excellent flame-retardant properties, achieving an LOI value of 35.3 % and a UL-94 V-0 rating. Additionally, the total heat release (THR) and total smoke production (TSP) recorded during cone calorimeter tests decreased by 69.7 % and 70.9 %, respectively. Moreover, further analysis of the residual char of SiW-LDH/AMP/EP demonstrated that the catalytic carbonization co-effect of AMP and SiW-LDH promoted the formation of a dense and continuous char layer with aromatic structures containing AlO, WO, SiO, WC, Zn2+, P–O–C, and PN moieties. Notably, these structures enhanced the flame retardancy, smoke suppression, charring, and thermal insulation properties of the EP. These properties also originated from the dilution of non-combustible gases and the heat-absorbing action upon the thermal decomposition of SiW-LDH/AMP during combustion. Overall, these results demonstrate that the incorporation of SiW-LDH and AMP into epoxy matrices effectively enhances the flame retardancy and thermal insulation properties of polymer systems.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.