MERIT数据集:建模和有效地呈现可解释的转录本

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ignacio de Rodrigo, Alberto Sanchez-Cuadrado, Jaime Boal, Alvaro J. Lopez-Lopez
{"title":"MERIT数据集:建模和有效地呈现可解释的转录本","authors":"Ignacio de Rodrigo,&nbsp;Alberto Sanchez-Cuadrado,&nbsp;Jaime Boal,&nbsp;Alvaro J. Lopez-Lopez","doi":"10.1016/j.patcog.2025.112502","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces the MERIT Dataset, a multimodal, fully labeled dataset of school grade reports. Comprising over 400 labels and 33k samples, the MERIT Dataset is a resource for training models in demanding Visually-rich Document Understanding tasks. It contains multimodal features that link patterns in the textual, visual, and layout domains. The MERIT Dataset also includes biases in a controlled way, making it a valuable tool to benchmark biases induced in Language Models. The paper outlines the dataset’s generation pipeline and highlights its main features and patterns in its different domains. We benchmark the dataset for token classification, showing that it poses a significant challenge even for SOTA models.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112502"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The MERIT dataset: Modelling and efficiently rendering interpretable transcripts\",\"authors\":\"Ignacio de Rodrigo,&nbsp;Alberto Sanchez-Cuadrado,&nbsp;Jaime Boal,&nbsp;Alvaro J. Lopez-Lopez\",\"doi\":\"10.1016/j.patcog.2025.112502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces the MERIT Dataset, a multimodal, fully labeled dataset of school grade reports. Comprising over 400 labels and 33k samples, the MERIT Dataset is a resource for training models in demanding Visually-rich Document Understanding tasks. It contains multimodal features that link patterns in the textual, visual, and layout domains. The MERIT Dataset also includes biases in a controlled way, making it a valuable tool to benchmark biases induced in Language Models. The paper outlines the dataset’s generation pipeline and highlights its main features and patterns in its different domains. We benchmark the dataset for token classification, showing that it poses a significant challenge even for SOTA models.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"172 \",\"pages\":\"Article 112502\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325011653\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325011653","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了MERIT数据集,这是一个多模态的、完全标记的学校成绩报告数据集。MERIT数据集包含超过400个标签和33k个样本,是训练模型的资源,用于要求视觉丰富的文档理解任务。它包含链接文本、视觉和布局域中的模式的多模态特性。MERIT数据集还以受控的方式包含偏差,使其成为对语言模型中引起的偏差进行基准测试的宝贵工具。本文概述了数据集的生成流程,并强调了其在不同领域的主要特征和模式。我们对令牌分类的数据集进行了基准测试,表明即使对于SOTA模型,它也构成了重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The MERIT dataset: Modelling and efficiently rendering interpretable transcripts
This paper introduces the MERIT Dataset, a multimodal, fully labeled dataset of school grade reports. Comprising over 400 labels and 33k samples, the MERIT Dataset is a resource for training models in demanding Visually-rich Document Understanding tasks. It contains multimodal features that link patterns in the textual, visual, and layout domains. The MERIT Dataset also includes biases in a controlled way, making it a valuable tool to benchmark biases induced in Language Models. The paper outlines the dataset’s generation pipeline and highlights its main features and patterns in its different domains. We benchmark the dataset for token classification, showing that it poses a significant challenge even for SOTA models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信