Jordan N. Figueiredo, Bassam B. Dally, Deanna A. Lacoste
{"title":"从纯H2到H2 - co2混合物:等离子体铁冶炼还原中还原剂策略的研究","authors":"Jordan N. Figueiredo, Bassam B. Dally, Deanna A. Lacoste","doi":"10.1016/j.jaecs.2025.100401","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen plasma offers an emerging route for carbon-free iron oxide reduction, but typical inert gas dilution limits industrial applicability. This study explores pure hydrogen and hydrogen–carbon dioxide plasma for in-flight hematite reduction in atmospheric elongated arc discharge. Pure hydrogen yields the lowest power consumption, but reduced plasma stability and limited conversion. CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> addition enhances stability, increasing gas temperature from approximately 1900<!--> <!-->K (pure H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) to 2900 K at 50% CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> driven by exothermic H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> oxidation. Particle rapidly reach gas temperature (<span><math><mo>></mo></math></span>2000 K within 5 ms). The highest metallization degree (<span><math><mo>≈</mo></math></span>37%) achieved at 30% CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, corresponds to an optimal reductant gas composition balancing hydrogen, carbon monoxide, and atomic hydrogen availability. Higher dilution (50% CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) significantly decreased the reductant gas availability, lowering the degree of reduction despite higher temperatures. These insights demonstrate that controlled CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> co-feeding and regeneration optimize plasma stability, temperature, and reductant gas chemistry, presenting a promising approach towards scalable and energy-efficient hydrogen plasma smelting reduction for sustainable metallurgy with a CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> closed loop.</div></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"24 ","pages":"Article 100401"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From pure H2 to H2–CO2 mixtures: A study of reductant strategies in plasma iron smelting reduction\",\"authors\":\"Jordan N. Figueiredo, Bassam B. Dally, Deanna A. Lacoste\",\"doi\":\"10.1016/j.jaecs.2025.100401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen plasma offers an emerging route for carbon-free iron oxide reduction, but typical inert gas dilution limits industrial applicability. This study explores pure hydrogen and hydrogen–carbon dioxide plasma for in-flight hematite reduction in atmospheric elongated arc discharge. Pure hydrogen yields the lowest power consumption, but reduced plasma stability and limited conversion. CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> addition enhances stability, increasing gas temperature from approximately 1900<!--> <!-->K (pure H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) to 2900 K at 50% CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> driven by exothermic H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> oxidation. Particle rapidly reach gas temperature (<span><math><mo>></mo></math></span>2000 K within 5 ms). The highest metallization degree (<span><math><mo>≈</mo></math></span>37%) achieved at 30% CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, corresponds to an optimal reductant gas composition balancing hydrogen, carbon monoxide, and atomic hydrogen availability. Higher dilution (50% CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) significantly decreased the reductant gas availability, lowering the degree of reduction despite higher temperatures. These insights demonstrate that controlled CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> co-feeding and regeneration optimize plasma stability, temperature, and reductant gas chemistry, presenting a promising approach towards scalable and energy-efficient hydrogen plasma smelting reduction for sustainable metallurgy with a CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> closed loop.</div></div>\",\"PeriodicalId\":100104,\"journal\":{\"name\":\"Applications in Energy and Combustion Science\",\"volume\":\"24 \",\"pages\":\"Article 100401\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Energy and Combustion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666352X25000822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X25000822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
氢等离子体为无碳氧化铁还原提供了一条新兴途径,但典型的惰性气体稀释限制了工业应用。本研究探讨了纯氢和二氧化碳氢等离子体在大气长弧放电中还原飞行中的赤铁矿。纯氢产生最低的功耗,但降低了等离子体的稳定性和有限的转换。二氧化碳的加入提高了稳定性,将气体温度从大约1900 K(纯H2)提高到2900 K (50% CO2),由放热H2氧化驱动。颗粒迅速达到气体温度(5ms内达到2000k)。当二氧化碳含量为30%时,达到最高的金属化度(≈37%),对应于平衡氢、一氧化碳和氢原子可用性的最佳还原剂气体组成。更高的稀释度(50% CO2)显著降低了还原剂气体的可用性,降低了还原程度,尽管温度更高。这些见解表明,可控的二氧化碳共馈和再生优化了等离子体的稳定性、温度和还原剂气体化学,为二氧化碳闭环可持续冶金提供了一种可扩展和节能的氢等离子体冶炼还原方法。
From pure H2 to H2–CO2 mixtures: A study of reductant strategies in plasma iron smelting reduction
Hydrogen plasma offers an emerging route for carbon-free iron oxide reduction, but typical inert gas dilution limits industrial applicability. This study explores pure hydrogen and hydrogen–carbon dioxide plasma for in-flight hematite reduction in atmospheric elongated arc discharge. Pure hydrogen yields the lowest power consumption, but reduced plasma stability and limited conversion. CO addition enhances stability, increasing gas temperature from approximately 1900 K (pure H) to 2900 K at 50% CO driven by exothermic H oxidation. Particle rapidly reach gas temperature (2000 K within 5 ms). The highest metallization degree (37%) achieved at 30% CO, corresponds to an optimal reductant gas composition balancing hydrogen, carbon monoxide, and atomic hydrogen availability. Higher dilution (50% CO) significantly decreased the reductant gas availability, lowering the degree of reduction despite higher temperatures. These insights demonstrate that controlled CO co-feeding and regeneration optimize plasma stability, temperature, and reductant gas chemistry, presenting a promising approach towards scalable and energy-efficient hydrogen plasma smelting reduction for sustainable metallurgy with a CO closed loop.