希尔伯特曲线增强的Mamba实时语义分割

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lianyin Jia , Aoxiang Gao , Mengjuan Li , Xiaodong Fu , Haihe Zhou , Jiaman Ding
{"title":"希尔伯特曲线增强的Mamba实时语义分割","authors":"Lianyin Jia ,&nbsp;Aoxiang Gao ,&nbsp;Mengjuan Li ,&nbsp;Xiaodong Fu ,&nbsp;Haihe Zhou ,&nbsp;Jiaman Ding","doi":"10.1016/j.patcog.2025.112457","DOIUrl":null,"url":null,"abstract":"<div><div>Semantic segmentation is a core technology for vehicle perception of the surrounding environment in autonomous driving. However, existing real-time semantic segmentation models face two major challenges: loss of local detail information and inconsistency of intra-class semantic information. To address these issues, we propose a novel network architecture, HMSNet. The network mainly consists of the following three core modules: the Hilbert curve enhanced Visual Mamba Block (HVM Block), Selective Attention Fusion Module (SAFM), and Multi-scale Context-Aware Module (MCAM). The HVM Block utilizes the Hilbert curve to reduce the dimensionality of two-dimensional images and applies a selective scanning algorithm in Mamba, enabling the network to effectively capture local dependencies while maintaining a global receptive field, thereby optimizing the consistency of intra-class semantic information. The SAFM module effectively merges local detail information from shallow networks with global semantic information from deep networks, alleviating the problem of local detail information loss. Finally, the MCAM module, introduced at the end of the network, enhances the model,s ability to judge contextual information, thereby improving segmentation accuracy. Experimental results show that HMSNet achieves an excellent balance between segmentation accuracy and inference speed on challenging public datasets, including CamVid, Cityscapes, and ADE20K.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112457"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HMSNet: Hilbert curve enhanced Mamba for real-time semantic segmentation\",\"authors\":\"Lianyin Jia ,&nbsp;Aoxiang Gao ,&nbsp;Mengjuan Li ,&nbsp;Xiaodong Fu ,&nbsp;Haihe Zhou ,&nbsp;Jiaman Ding\",\"doi\":\"10.1016/j.patcog.2025.112457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Semantic segmentation is a core technology for vehicle perception of the surrounding environment in autonomous driving. However, existing real-time semantic segmentation models face two major challenges: loss of local detail information and inconsistency of intra-class semantic information. To address these issues, we propose a novel network architecture, HMSNet. The network mainly consists of the following three core modules: the Hilbert curve enhanced Visual Mamba Block (HVM Block), Selective Attention Fusion Module (SAFM), and Multi-scale Context-Aware Module (MCAM). The HVM Block utilizes the Hilbert curve to reduce the dimensionality of two-dimensional images and applies a selective scanning algorithm in Mamba, enabling the network to effectively capture local dependencies while maintaining a global receptive field, thereby optimizing the consistency of intra-class semantic information. The SAFM module effectively merges local detail information from shallow networks with global semantic information from deep networks, alleviating the problem of local detail information loss. Finally, the MCAM module, introduced at the end of the network, enhances the model,s ability to judge contextual information, thereby improving segmentation accuracy. Experimental results show that HMSNet achieves an excellent balance between segmentation accuracy and inference speed on challenging public datasets, including CamVid, Cityscapes, and ADE20K.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"172 \",\"pages\":\"Article 112457\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325011203\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325011203","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

语义分割是自动驾驶中车辆感知周围环境的核心技术。然而,现有的实时语义分割模型面临着局部细节信息丢失和类内语义信息不一致两大挑战。为了解决这些问题,我们提出了一种新的网络架构HMSNet。该网络主要由以下三个核心模块组成:希尔伯特曲线增强视觉曼巴模块(HVM Block)、选择性注意融合模块(SAFM)和多尺度上下文感知模块(MCAM)。HVM Block利用Hilbert曲线降低二维图像的维数,并在Mamba中应用选择性扫描算法,使网络在保持全局接受场的同时有效捕获局部依赖项,从而优化类内语义信息的一致性。SAFM模块有效地融合了浅层网络的局部细节信息和深层网络的全局语义信息,缓解了局部细节信息丢失的问题。最后,在网络的最后引入了MCAM模块,增强了模型对上下文信息的判断能力,从而提高了分割的准确性。实验结果表明,HMSNet在具有挑战性的公共数据集(包括CamVid, cityscape和ADE20K)上实现了分割精度和推理速度之间的良好平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HMSNet: Hilbert curve enhanced Mamba for real-time semantic segmentation
Semantic segmentation is a core technology for vehicle perception of the surrounding environment in autonomous driving. However, existing real-time semantic segmentation models face two major challenges: loss of local detail information and inconsistency of intra-class semantic information. To address these issues, we propose a novel network architecture, HMSNet. The network mainly consists of the following three core modules: the Hilbert curve enhanced Visual Mamba Block (HVM Block), Selective Attention Fusion Module (SAFM), and Multi-scale Context-Aware Module (MCAM). The HVM Block utilizes the Hilbert curve to reduce the dimensionality of two-dimensional images and applies a selective scanning algorithm in Mamba, enabling the network to effectively capture local dependencies while maintaining a global receptive field, thereby optimizing the consistency of intra-class semantic information. The SAFM module effectively merges local detail information from shallow networks with global semantic information from deep networks, alleviating the problem of local detail information loss. Finally, the MCAM module, introduced at the end of the network, enhances the model,s ability to judge contextual information, thereby improving segmentation accuracy. Experimental results show that HMSNet achieves an excellent balance between segmentation accuracy and inference speed on challenging public datasets, including CamVid, Cityscapes, and ADE20K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信