基于动态尺度感知标签分配和上下文增强的微小目标检测

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tianyang Zhang, Xiangrong Zhang, Chaozhuo Hua, Guanchun Wang, Xiao Han, Licheng Jiao
{"title":"基于动态尺度感知标签分配和上下文增强的微小目标检测","authors":"Tianyang Zhang,&nbsp;Xiangrong Zhang,&nbsp;Chaozhuo Hua,&nbsp;Guanchun Wang,&nbsp;Xiao Han,&nbsp;Licheng Jiao","doi":"10.1016/j.patcog.2025.112449","DOIUrl":null,"url":null,"abstract":"<div><div>The prosperity of recent object detection can not camouflage the deficiencies of tiny object detection. The generic object detectors suffer a dramatic performance degradation on tiny object detection. For this purpose, we present a tiny object detection approach based on Dynamic scale-awareness label assignment and Contextual enhancement (DCNet), which improves the tiny object detection performance from label assignment and feature enhancement perspectives. Considering the IoU-based label assignment seriously harms the positive samples for tiny objects, we design a Dynamic Scale-Awareness (DSA) label assignment to replace it in the region proposal network. The DSA label assignment adaptively rescales preset anchors and introduces the regression information to better assign the preset anchors for tiny objects. Furthermore, the tiny objects often exhibit weak feature responses due to their poor-quality appearance. Therefore, we propose a contextual enhancement module that aggregates contextual information at different scales to enhance tiny objects’ feature responses. Comprehensive experimental analyses on multiple datasets confirm the effectiveness and good generality of our proposed DCNet in tiny object detection.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112449"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tiny object detection based on dynamic scale-awareness label assignment and contextual enhancement\",\"authors\":\"Tianyang Zhang,&nbsp;Xiangrong Zhang,&nbsp;Chaozhuo Hua,&nbsp;Guanchun Wang,&nbsp;Xiao Han,&nbsp;Licheng Jiao\",\"doi\":\"10.1016/j.patcog.2025.112449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The prosperity of recent object detection can not camouflage the deficiencies of tiny object detection. The generic object detectors suffer a dramatic performance degradation on tiny object detection. For this purpose, we present a tiny object detection approach based on Dynamic scale-awareness label assignment and Contextual enhancement (DCNet), which improves the tiny object detection performance from label assignment and feature enhancement perspectives. Considering the IoU-based label assignment seriously harms the positive samples for tiny objects, we design a Dynamic Scale-Awareness (DSA) label assignment to replace it in the region proposal network. The DSA label assignment adaptively rescales preset anchors and introduces the regression information to better assign the preset anchors for tiny objects. Furthermore, the tiny objects often exhibit weak feature responses due to their poor-quality appearance. Therefore, we propose a contextual enhancement module that aggregates contextual information at different scales to enhance tiny objects’ feature responses. Comprehensive experimental analyses on multiple datasets confirm the effectiveness and good generality of our proposed DCNet in tiny object detection.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"172 \",\"pages\":\"Article 112449\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325011112\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325011112","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来目标检测的繁荣并不能掩盖微小目标检测的不足。一般的目标检测器在微小目标检测上的性能下降非常严重。为此,我们提出了一种基于动态尺度感知标签分配和上下文增强(DCNet)的微小目标检测方法,从标签分配和特征增强的角度提高了微小目标的检测性能。考虑到基于iou的标签分配严重损害了微小目标的正样本,我们设计了一种动态尺度感知(DSA)标签分配来取代它在区域提议网络中的应用。DSA标签分配自适应地重新缩放预设锚点,并引入回归信息,更好地为微小对象分配预设锚点。此外,由于其外观质量差,微小物体往往表现出较弱的特征响应。因此,我们提出了一个上下文增强模块,该模块可以聚合不同尺度的上下文信息来增强微小物体的特征响应。在多个数据集上的综合实验分析证实了我们提出的DCNet在微小目标检测中的有效性和良好的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tiny object detection based on dynamic scale-awareness label assignment and contextual enhancement
The prosperity of recent object detection can not camouflage the deficiencies of tiny object detection. The generic object detectors suffer a dramatic performance degradation on tiny object detection. For this purpose, we present a tiny object detection approach based on Dynamic scale-awareness label assignment and Contextual enhancement (DCNet), which improves the tiny object detection performance from label assignment and feature enhancement perspectives. Considering the IoU-based label assignment seriously harms the positive samples for tiny objects, we design a Dynamic Scale-Awareness (DSA) label assignment to replace it in the region proposal network. The DSA label assignment adaptively rescales preset anchors and introduces the regression information to better assign the preset anchors for tiny objects. Furthermore, the tiny objects often exhibit weak feature responses due to their poor-quality appearance. Therefore, we propose a contextual enhancement module that aggregates contextual information at different scales to enhance tiny objects’ feature responses. Comprehensive experimental analyses on multiple datasets confirm the effectiveness and good generality of our proposed DCNet in tiny object detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信