RGBX-DiffusionDet:一个使用DiffusionDet进行多模态RGB-X目标检测的框架

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Eliraz Orfaig, Inna Stainvas, Igal Bilik
{"title":"RGBX-DiffusionDet:一个使用DiffusionDet进行多模态RGB-X目标检测的框架","authors":"Eliraz Orfaig,&nbsp;Inna Stainvas,&nbsp;Igal Bilik","doi":"10.1016/j.patcog.2025.112460","DOIUrl":null,"url":null,"abstract":"<div><div>This work addresses the challenge of object detection using multimodal heterogeneous sensors by extending the recently proposed DiffusionDet framework, initially designed for RGB-only detection. We propose RGBX-DiffusionDet, a generalized diffusion-based object detection framework that enables seamless fusion of heterogeneous 2D modalities (denoted as “X”, e.g., depth, infrared, and polarimetric data) with RGB imagery. The proposed approach adopts a mid-level feature fusion strategy to address the heterogeneous nature of multimodal data, characterized by varying spatial resolutions, noise profiles, and semantic content. Instead of commonly used brute-force feature concatenation, we introduce two novel architectural components: (1) a dynamic channel reduction convolutional block attention module (DCR-CBAM), which enhances cross-modal fusion by emphasizing salient channel features while reducing the dimensionality of merged RGB-X features, and (2) a dynamic multi-level aggregation block (DMLAB), which addresses a limitation of the baseline DiffusionDet decoder by adaptively fusing spatial features to improve object localization. Additionally, we incorporate novel regularization losses that promote channel saliency and spatial selectivity, resulting in compact and discriminative feature embeddings. Extensive experiments on RGB-depth (KITTI), a newly annotated RGB-polarimetric (RGB-P) dataset, and RGB-infrared (M3FD) benchmarks demonstrate consistent superiority of the proposed approach over RGB-only baselines, while maintaining decoding efficiency. We further show that RGBX-DiffusionDet exhibits improved robustness and generalization capability in visually-corrupted conditions, demonstrating its practical efficiency for robust multimodal object detection.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112460"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RGBX-DiffusionDet: a framework for multi-modal RGB-X object detection using DiffusionDet\",\"authors\":\"Eliraz Orfaig,&nbsp;Inna Stainvas,&nbsp;Igal Bilik\",\"doi\":\"10.1016/j.patcog.2025.112460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work addresses the challenge of object detection using multimodal heterogeneous sensors by extending the recently proposed DiffusionDet framework, initially designed for RGB-only detection. We propose RGBX-DiffusionDet, a generalized diffusion-based object detection framework that enables seamless fusion of heterogeneous 2D modalities (denoted as “X”, e.g., depth, infrared, and polarimetric data) with RGB imagery. The proposed approach adopts a mid-level feature fusion strategy to address the heterogeneous nature of multimodal data, characterized by varying spatial resolutions, noise profiles, and semantic content. Instead of commonly used brute-force feature concatenation, we introduce two novel architectural components: (1) a dynamic channel reduction convolutional block attention module (DCR-CBAM), which enhances cross-modal fusion by emphasizing salient channel features while reducing the dimensionality of merged RGB-X features, and (2) a dynamic multi-level aggregation block (DMLAB), which addresses a limitation of the baseline DiffusionDet decoder by adaptively fusing spatial features to improve object localization. Additionally, we incorporate novel regularization losses that promote channel saliency and spatial selectivity, resulting in compact and discriminative feature embeddings. Extensive experiments on RGB-depth (KITTI), a newly annotated RGB-polarimetric (RGB-P) dataset, and RGB-infrared (M3FD) benchmarks demonstrate consistent superiority of the proposed approach over RGB-only baselines, while maintaining decoding efficiency. We further show that RGBX-DiffusionDet exhibits improved robustness and generalization capability in visually-corrupted conditions, demonstrating its practical efficiency for robust multimodal object detection.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"172 \",\"pages\":\"Article 112460\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325011239\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325011239","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

这项工作通过扩展最近提出的DiffusionDet框架(最初仅为rgb检测而设计),解决了使用多模态异构传感器进行目标检测的挑战。我们提出了RGBX-DiffusionDet,这是一个基于广义扩散的目标检测框架,可以将异构2D模式(表示为“X”,例如深度、红外和偏振数据)与RGB图像无缝融合。该方法采用了一种中级特征融合策略来解决多模态数据的异构性,其特征是不同的空间分辨率、噪声轮廓和语义内容。我们引入了两个新的架构组件,而不是常用的暴力功能连接:(1)动态信道减少卷积块注意模块(DCR-CBAM),通过强调显著信道特征,同时降低合并的RGB-X特征的维数来增强跨模态融合;(2)动态多级聚合块(DMLAB),通过自适应融合空间特征来改善目标定位,解决了基线DiffusionDet解码器的局限性。此外,我们结合了新的正则化损失,促进信道显著性和空间选择性,从而产生紧凑和判别性的特征嵌入。在rgb深度(KITTI)、新注释的rgb偏振(RGB-P)数据集和rgb红外(M3FD)基准测试上进行的大量实验表明,所提出的方法在保持解码效率的同时,比仅rgb基线具有一致的优势。我们进一步证明了RGBX-DiffusionDet在视觉破坏条件下具有更好的鲁棒性和泛化能力,证明了其在鲁棒多模态目标检测方面的实际效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

RGBX-DiffusionDet: a framework for multi-modal RGB-X object detection using DiffusionDet

RGBX-DiffusionDet: a framework for multi-modal RGB-X object detection using DiffusionDet
This work addresses the challenge of object detection using multimodal heterogeneous sensors by extending the recently proposed DiffusionDet framework, initially designed for RGB-only detection. We propose RGBX-DiffusionDet, a generalized diffusion-based object detection framework that enables seamless fusion of heterogeneous 2D modalities (denoted as “X”, e.g., depth, infrared, and polarimetric data) with RGB imagery. The proposed approach adopts a mid-level feature fusion strategy to address the heterogeneous nature of multimodal data, characterized by varying spatial resolutions, noise profiles, and semantic content. Instead of commonly used brute-force feature concatenation, we introduce two novel architectural components: (1) a dynamic channel reduction convolutional block attention module (DCR-CBAM), which enhances cross-modal fusion by emphasizing salient channel features while reducing the dimensionality of merged RGB-X features, and (2) a dynamic multi-level aggregation block (DMLAB), which addresses a limitation of the baseline DiffusionDet decoder by adaptively fusing spatial features to improve object localization. Additionally, we incorporate novel regularization losses that promote channel saliency and spatial selectivity, resulting in compact and discriminative feature embeddings. Extensive experiments on RGB-depth (KITTI), a newly annotated RGB-polarimetric (RGB-P) dataset, and RGB-infrared (M3FD) benchmarks demonstrate consistent superiority of the proposed approach over RGB-only baselines, while maintaining decoding efficiency. We further show that RGBX-DiffusionDet exhibits improved robustness and generalization capability in visually-corrupted conditions, demonstrating its practical efficiency for robust multimodal object detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信