{"title":"树脂再利用对3D打印微通道形状精度的影响及对流体动力流动稳定性的影响","authors":"Emanuela Cutuli , Lorena Saitta , Giovanni Celano , Claudio Tosto , Gianluca Cicala , Maide Bucolo","doi":"10.1016/j.precisioneng.2025.09.022","DOIUrl":null,"url":null,"abstract":"<div><div>This work investigates the impact of resin reuse on the form accuracy and hydrodynamic stability of microfluidic channels fabricated via Projection Micro-Stereolithography (P<span><math><mi>μ</mi></math></span>SL). Three micro-optofluidic (MoF) devices were manufactured using fresh, once and twice reused photocurable resin batches. Resin reuse offers a sustainable approach that addresses recycling challenges associated with cured acrylate and methacrylate resins, making it an increasingly effective option for eco-friendly manufacturing. The devices were tested through an air–water bi-phase flow to assess hydrodynamic stability. A Phase I distribution-free quality control approach employing recursive sequential and permutation (RS/P) methods was conducted to evaluate channels’ width stability, while Fourier Transform Infrared Spectroscopy (FT-IR) was exploited to track chemical changes in reused resin batches. A Design of Experiment (DoE) study allowed hydrodynamic performance to be analyzed for the devices, revealing that increasing the flow rate to 0.3 <span><math><mi>mL/min</mi></math></span> enhanced stability across all devices, overcoming flow constriction effects caused by the photocurable resin reuse.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"97 ","pages":"Pages 334-347"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of resin reuse on form accuracy in 3D printed microchannels and effects on hydrodynamic flow stability\",\"authors\":\"Emanuela Cutuli , Lorena Saitta , Giovanni Celano , Claudio Tosto , Gianluca Cicala , Maide Bucolo\",\"doi\":\"10.1016/j.precisioneng.2025.09.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work investigates the impact of resin reuse on the form accuracy and hydrodynamic stability of microfluidic channels fabricated via Projection Micro-Stereolithography (P<span><math><mi>μ</mi></math></span>SL). Three micro-optofluidic (MoF) devices were manufactured using fresh, once and twice reused photocurable resin batches. Resin reuse offers a sustainable approach that addresses recycling challenges associated with cured acrylate and methacrylate resins, making it an increasingly effective option for eco-friendly manufacturing. The devices were tested through an air–water bi-phase flow to assess hydrodynamic stability. A Phase I distribution-free quality control approach employing recursive sequential and permutation (RS/P) methods was conducted to evaluate channels’ width stability, while Fourier Transform Infrared Spectroscopy (FT-IR) was exploited to track chemical changes in reused resin batches. A Design of Experiment (DoE) study allowed hydrodynamic performance to be analyzed for the devices, revealing that increasing the flow rate to 0.3 <span><math><mi>mL/min</mi></math></span> enhanced stability across all devices, overcoming flow constriction effects caused by the photocurable resin reuse.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"97 \",\"pages\":\"Pages 334-347\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635925002880\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925002880","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Impact of resin reuse on form accuracy in 3D printed microchannels and effects on hydrodynamic flow stability
This work investigates the impact of resin reuse on the form accuracy and hydrodynamic stability of microfluidic channels fabricated via Projection Micro-Stereolithography (PSL). Three micro-optofluidic (MoF) devices were manufactured using fresh, once and twice reused photocurable resin batches. Resin reuse offers a sustainable approach that addresses recycling challenges associated with cured acrylate and methacrylate resins, making it an increasingly effective option for eco-friendly manufacturing. The devices were tested through an air–water bi-phase flow to assess hydrodynamic stability. A Phase I distribution-free quality control approach employing recursive sequential and permutation (RS/P) methods was conducted to evaluate channels’ width stability, while Fourier Transform Infrared Spectroscopy (FT-IR) was exploited to track chemical changes in reused resin batches. A Design of Experiment (DoE) study allowed hydrodynamic performance to be analyzed for the devices, revealing that increasing the flow rate to 0.3 enhanced stability across all devices, overcoming flow constriction effects caused by the photocurable resin reuse.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.