一种用于高精度空气静压轴承的新型仿生复合节流器:设计与评价

IF 3.7 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Xiuyuan Chen , Xichun Luo , Yazhou Sun , Wenbin Zhong , Charles Walker , Yankang Tian , Zhengjian Wang , Wenlong Chang , Frank Wardle
{"title":"一种用于高精度空气静压轴承的新型仿生复合节流器:设计与评价","authors":"Xiuyuan Chen ,&nbsp;Xichun Luo ,&nbsp;Yazhou Sun ,&nbsp;Wenbin Zhong ,&nbsp;Charles Walker ,&nbsp;Yankang Tian ,&nbsp;Zhengjian Wang ,&nbsp;Wenlong Chang ,&nbsp;Frank Wardle","doi":"10.1016/j.precisioneng.2025.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>Compound restrictors are widely adopted in aerostatic bearings due to their good static performance and ease of fabrication. However, further enhancement of their performance using surfaces with groove structures designed is still rarely researched. Inspired by the unique fluid controllability of the biomimetic hexagonal micro-pattern, this paper proposes a novel bio-inspired aerostatic bearing design to realize high stability without compromising load capacity and static stiffness. Air mass flow rate, another key factor affecting its static performance, is also considered. Computational fluid dynamics (CFD) simulation study reveals that setting suitable divergence angle enables better pressurized airflow controllability. The key structural parameters were calculated using the resistance network method (RNM). The results were further verified through experimental measurements. Performance tests of the prototyped aerostatic linear motion stage verified the theoretical modelling accuracy. A positioning accuracy (perpendicular to the stage feed direction) of less than 15 nm/10 mm was achieved, which was almost half of that of the conventional linear bearing stage under the same conditions (8 μm bearing clearance, 0.2 MPa supply pressure).</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"97 ","pages":"Pages 348-366"},"PeriodicalIF":3.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel bio-inspired compound restrictor for high-precision aerostatic bearings: design and evaluation\",\"authors\":\"Xiuyuan Chen ,&nbsp;Xichun Luo ,&nbsp;Yazhou Sun ,&nbsp;Wenbin Zhong ,&nbsp;Charles Walker ,&nbsp;Yankang Tian ,&nbsp;Zhengjian Wang ,&nbsp;Wenlong Chang ,&nbsp;Frank Wardle\",\"doi\":\"10.1016/j.precisioneng.2025.09.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Compound restrictors are widely adopted in aerostatic bearings due to their good static performance and ease of fabrication. However, further enhancement of their performance using surfaces with groove structures designed is still rarely researched. Inspired by the unique fluid controllability of the biomimetic hexagonal micro-pattern, this paper proposes a novel bio-inspired aerostatic bearing design to realize high stability without compromising load capacity and static stiffness. Air mass flow rate, another key factor affecting its static performance, is also considered. Computational fluid dynamics (CFD) simulation study reveals that setting suitable divergence angle enables better pressurized airflow controllability. The key structural parameters were calculated using the resistance network method (RNM). The results were further verified through experimental measurements. Performance tests of the prototyped aerostatic linear motion stage verified the theoretical modelling accuracy. A positioning accuracy (perpendicular to the stage feed direction) of less than 15 nm/10 mm was achieved, which was almost half of that of the conventional linear bearing stage under the same conditions (8 μm bearing clearance, 0.2 MPa supply pressure).</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"97 \",\"pages\":\"Pages 348-366\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635925002910\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925002910","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

复合节流器由于其良好的静力性能和易于制造而被广泛应用于空气静压轴承中。然而,利用设计沟槽结构的表面进一步提高其性能的研究仍然很少。基于仿生六边形微纹独特的流体可控性,提出了一种新型仿生空气静压轴承设计,在不影响承载能力和静刚度的前提下实现高稳定性。空气质量流量是影响其静态性能的另一个关键因素。计算流体力学(CFD)仿真研究表明,设置合适的散度角可以提高增压气流的可控性。采用阻力网络法(RNM)计算了关键结构参数。通过实验测量进一步验证了结果。气动直线运动平台样机的性能试验验证了理论模型的准确性。定位精度(垂直于工作台进给方向)小于15 nm/10 mm,在相同条件下(轴承间隙8 μm,供应压力0.2 MPa),定位精度几乎是传统线性轴承工作台的一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel bio-inspired compound restrictor for high-precision aerostatic bearings: design and evaluation
Compound restrictors are widely adopted in aerostatic bearings due to their good static performance and ease of fabrication. However, further enhancement of their performance using surfaces with groove structures designed is still rarely researched. Inspired by the unique fluid controllability of the biomimetic hexagonal micro-pattern, this paper proposes a novel bio-inspired aerostatic bearing design to realize high stability without compromising load capacity and static stiffness. Air mass flow rate, another key factor affecting its static performance, is also considered. Computational fluid dynamics (CFD) simulation study reveals that setting suitable divergence angle enables better pressurized airflow controllability. The key structural parameters were calculated using the resistance network method (RNM). The results were further verified through experimental measurements. Performance tests of the prototyped aerostatic linear motion stage verified the theoretical modelling accuracy. A positioning accuracy (perpendicular to the stage feed direction) of less than 15 nm/10 mm was achieved, which was almost half of that of the conventional linear bearing stage under the same conditions (8 μm bearing clearance, 0.2 MPa supply pressure).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信