通过整合空间转录组学实现统一的分子增强病理图像表示学习

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Minghao Han , Dingkang Yang , Jiabei Cheng , Xukun Zhang , Zizhi Chen , Haopeng Kuang , Lihua Zhang
{"title":"通过整合空间转录组学实现统一的分子增强病理图像表示学习","authors":"Minghao Han ,&nbsp;Dingkang Yang ,&nbsp;Jiabei Cheng ,&nbsp;Xukun Zhang ,&nbsp;Zizhi Chen ,&nbsp;Haopeng Kuang ,&nbsp;Lihua Zhang","doi":"10.1016/j.patcog.2025.112458","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in multimodal pre-training have advanced computational pathology, but current visual-language approaches lack molecular perspective and face performance bottlenecks in clinical settings. Here, we introduce a <strong>U</strong>nified <strong>M</strong>olecule-enhanced <strong>P</strong>athology <strong>I</strong>mage <strong>RE</strong>presentation Learning framework (<span><math><mtext>UMPIRE</mtext></math></span>) that enhances the robustness and generalization capabilities of pathology image analysis across diverse tissue types and sequencing platforms. <span><math><mtext>UMPIRE</mtext></math></span> leverages complementary information from gene expression profiles to guide multimodal pre-training, addressing the challenge of distribution shifts between research and clinical environments. To overcome the scarcity of paired data, we collected more than 4 million entries of spatial transcriptomics gene expression to train the gene encoder. <span><math><mtext>UMPIRE</mtext></math></span> aligns modalities across 697K pathology image-gene expression pairs, creating a foundation model that demonstrates superior generalization across multiple sequencing platforms and downstream tasks without additional fine-tuning. Comprehensive evaluation shows <span><math><mtext>UMPIRE</mtext></math></span>’s effectiveness in gene expression prediction, spot classification, and mutation state prediction in whole slide images, with significant improvements over state-of-the-art methods. Our findings demonstrate how molecular data integration enhances visual pattern recognition in computational pathology, providing a resilient approach for bench-to-bedside translation. The code and pre-trained weights are available at <span><span>https://github.com/Hanminghao/Umpire</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"172 ","pages":"Article 112458"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards unified molecule-enhanced pathology image representation learning via integrating spatial transcriptomics\",\"authors\":\"Minghao Han ,&nbsp;Dingkang Yang ,&nbsp;Jiabei Cheng ,&nbsp;Xukun Zhang ,&nbsp;Zizhi Chen ,&nbsp;Haopeng Kuang ,&nbsp;Lihua Zhang\",\"doi\":\"10.1016/j.patcog.2025.112458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advancements in multimodal pre-training have advanced computational pathology, but current visual-language approaches lack molecular perspective and face performance bottlenecks in clinical settings. Here, we introduce a <strong>U</strong>nified <strong>M</strong>olecule-enhanced <strong>P</strong>athology <strong>I</strong>mage <strong>RE</strong>presentation Learning framework (<span><math><mtext>UMPIRE</mtext></math></span>) that enhances the robustness and generalization capabilities of pathology image analysis across diverse tissue types and sequencing platforms. <span><math><mtext>UMPIRE</mtext></math></span> leverages complementary information from gene expression profiles to guide multimodal pre-training, addressing the challenge of distribution shifts between research and clinical environments. To overcome the scarcity of paired data, we collected more than 4 million entries of spatial transcriptomics gene expression to train the gene encoder. <span><math><mtext>UMPIRE</mtext></math></span> aligns modalities across 697K pathology image-gene expression pairs, creating a foundation model that demonstrates superior generalization across multiple sequencing platforms and downstream tasks without additional fine-tuning. Comprehensive evaluation shows <span><math><mtext>UMPIRE</mtext></math></span>’s effectiveness in gene expression prediction, spot classification, and mutation state prediction in whole slide images, with significant improvements over state-of-the-art methods. Our findings demonstrate how molecular data integration enhances visual pattern recognition in computational pathology, providing a resilient approach for bench-to-bedside translation. The code and pre-trained weights are available at <span><span>https://github.com/Hanminghao/Umpire</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"172 \",\"pages\":\"Article 112458\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320325011215\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325011215","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近在多模态预训练方面取得的进展促进了计算病理学的发展,但目前的视觉语言方法缺乏分子视角,在临床环境中面临性能瓶颈。在这里,我们介绍了一个统一的分子增强病理图像表示学习框架(UMPIRE),增强了不同组织类型和测序平台的病理图像分析的鲁棒性和泛化能力。UMPIRE利用来自基因表达谱的互补信息来指导多模式预训练,解决研究和临床环境之间分布变化的挑战。为了克服配对数据的稀缺性,我们收集了400多万条空间转录组学基因表达条目来训练基因编码器。UMPIRE对697K病理图像-基因表达对的模式进行比对,创建了一个基础模型,在多个测序平台和下游任务中展示了卓越的通用性,而无需额外的微调。综合评价表明UMPIRE在全幻灯片图像的基因表达预测、斑点分类和突变状态预测方面的有效性,与目前最先进的方法相比有显著改进。我们的研究结果证明了分子数据集成如何增强计算病理学中的视觉模式识别,为从实验室到床边的翻译提供了一种有弹性的方法。代码和预训练的权重可以在https://github.com/Hanminghao/Umpire上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards unified molecule-enhanced pathology image representation learning via integrating spatial transcriptomics
Recent advancements in multimodal pre-training have advanced computational pathology, but current visual-language approaches lack molecular perspective and face performance bottlenecks in clinical settings. Here, we introduce a Unified Molecule-enhanced Pathology Image REpresentation Learning framework (UMPIRE) that enhances the robustness and generalization capabilities of pathology image analysis across diverse tissue types and sequencing platforms. UMPIRE leverages complementary information from gene expression profiles to guide multimodal pre-training, addressing the challenge of distribution shifts between research and clinical environments. To overcome the scarcity of paired data, we collected more than 4 million entries of spatial transcriptomics gene expression to train the gene encoder. UMPIRE aligns modalities across 697K pathology image-gene expression pairs, creating a foundation model that demonstrates superior generalization across multiple sequencing platforms and downstream tasks without additional fine-tuning. Comprehensive evaluation shows UMPIRE’s effectiveness in gene expression prediction, spot classification, and mutation state prediction in whole slide images, with significant improvements over state-of-the-art methods. Our findings demonstrate how molecular data integration enhances visual pattern recognition in computational pathology, providing a resilient approach for bench-to-bedside translation. The code and pre-trained weights are available at https://github.com/Hanminghao/Umpire.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信